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Abstract—Simulation is becoming more and more important
for robotics research, especially for multi-robot system research.
Simatch, originating from the Robot World Cup (RoboCup)
Middle Size League (MSL) match, is proposed to simulate
the highly dynamic confrontation between multi-robot systems
and validate the adversarial multi-robot strategies. It consists
of three independent subsystems: the simulation subsystem
setting up the simulated environment, the strategy subsystem
realizing the multi-robot strategies and the scene subsystem
describing the specific scene. Due to the independence of
these subsystems, it is easy to employ Simatch for various
applications. Simatch is validated by a series of tests, including
the omnidirectional locomotion test, a simulated MSL match
among ten robots and a simulated encirclement of sixteen
robots. Since 2016, Simatch has been the official software for
the MSL simulation match in the Chinese Robotics Compe-
tition. Besides, an MSL simulation project based on Simatch
has been proposed to promote the development of MSL in the
2017 MSL international workshop. The proposed simulation
system facilitates the development of multi-robot cooperation
algorithms and related research.

Index Terms—Simatch, simulation system, highly dynamic,
adversarial, multi-robot system, strategy.

I. Introduction
Middle Size League (MSL) [1] is one of the founding

soccer leagues of Robot World Cup (RoboCup)1. In this
league, two teams each comprising five autonomous robots
play against each other in a soccer match according to the
modified game rules based on the actual human soccer
game. The novel feature of MSL is its highly dynamic
and aggressive environment. Robot players with average
weight nearly 40 kg can run at a speed over 5 m/s. It
is a high-level testbed for multi-robot strategies. Since
collision is common in this game and robots are quite
complex and expensive, experiments on real robots are
very costly and difficult. Therefore, we turn to build a
simulation system to simulate the highly dynamic and
aggressive match between multi-robot systems.

There are some available robot simulation systems.
Übersim [2] simulates the dynamic and aggressive en-
vironment in RoboCup Small Size League (SSL). The
main deficiency of Übersim is that the robot models
can only be parameterized at compiling time. SimRobot,

1 http://http://www.robocup.org/

another simulator in RoboCup Simulation, focus on rigid
body dynamics and the simulation of a variety of sensors
and actuators [3]. However, it is not widely used in
other domains. USARSim (Unified System for Automation
and Robotics Simulation), combined with ROS (Robot
Operating System), has been used in various applications
since 2012 [4]. But it is only commercially available.
In [5], a simulation system for MSL robots has been
realized based on Gazebo, but the project has been out
of maintenance.

Considering the fast implementation and perfect inter-
face with real robot codes based on ROS, Simatch, a
brand new simulation system based on Gazebo and ROS,
is built to simulate an MSL match, or any other kinds of
confrontation between multi-robot systems. This paper is
an important extension of [6] and [7], which only introduce
the implementation of the simulation environment and
the realization of basic motions of simulation models, etc.
In this paper, an extended simulation system consisting
of several new components is developed to facilitate the
research of multi-robot systems. It is notable that Simatch
comes with many new features. It can not only be used to
simulate the confrontation between multi-robot systems
but also record all the data of the game as a data set. In
addition, the game can be completely reproduced using
the data-playback function. Moreover, Simatch is open
source and highly flexible and extensible, it has been used
for research on encirclement control [8], [9], multi-robot
cooperation [10], task allocation [11] and so on.

This paper is organized as follows. In Section II, the
overall architecture of Simacth is depicted. Section III-V
describe the structure and function of three subsystems.
Then, Section VI introduces two key interfaces combining
these independent subsystems. Various validations are
presented in Section VII. Section VIII concludes the paper
and summarizes the future work.

II. Overall Architecture
Fig. 1 shows the general architecture of Simatch.

Simatch includes two teams of robots, “Cyan Team” and
“Magenta Team”, and three independent subsystems, the
simulation subsystem, the strategy subsystem and the



scene subsystem. These subsystems are highly indepen-
dent. A brief introduction for each subsystem is described
in the following text.

Fig. 1: The general architecture of Simatch.
The simulation subsystem is the basis of Simatch. It

models the simulated environment with various simulation
models based on Gazebo and realizes basic motions of
simulation models. By modifying simulation models, it is
possible to simulate various robots and environments. It
also provides exact statuses of models for other subsys-
tems, which is the basis of a multi-robot collaboration.

The strategy subsystem realizes multi-robot strategies.
Each team of robots have their own strategies. Generally
speaking, the strategy subsystem does not depend on a
specific robot model or multi-robot system, which makes
it possible to test multi-robot strategies for real robots
on a simulated multi-robot system. By sending velocity
commands, it controls simulated robots’ motions. “World
Model” is a virtual world built by a team of robots,
including statuses of simulation models and strategies
information of the team.

The scene subsystem is built to describe the specific
scene and control the process of a game with game
commands that divide a complicated or simple game into
a series of stages. They help two teams of robots to agree
on the process of the game, which is the key to realize the
confrontation. The game command is built to describe
different stages and it is also the only shared information
for two teams of robots.

III. Simulation Subsystem
The simulation subsystem has two important functions.

The first one is to set up a simulated environment, which
consists of various simulation models and a simulation
world. Another one is to realize basic motions of simulation
models.

A. Simulation Models and the Simulation World
In [6], a typical environment for MSL matches is built.

Its simulation models include the robot model, the soccer
field model, the goal model and the soccer ball model.
They are spawned as model plugins of Gazebo. The
realization of basic motions, including omnidirectional
locomotion, ball-dribbling and ball-kicking, is written in
the corresponding model plugin. The simulation world
determines lighting, simulation step size, simulation fre-
quency and other simulation properties, which are shown

in Table 1. The robot model and the simulation world are
shown in Fig. 2.

TABLE I: Parameters for a simulation MSL match

Property Name V alue
physics engine Open Dynamics Engine (ODE)
max step size 0.005
update rate 200

gravity 9.8

model plugins ground_plane, soccer field,
left goal, right goal

(a) (b)

(c)
Fig. 2: Mesh property (a) and collision property (b) of the
robot model and the simulation world (c).
B. Realization of Omnidirectional Locomotion

Compared with the traditional nonholonomic dual-drive
wheeled robot, the omnidirectional mobile robot is able
to synchronize steering and linear motion in any direction
[12]. This advantage improves the flexibility of the robot
greatly and enables the robot to realize faster target track-
ing and obstacle avoidance, which is extraordinarily im-
portant in a highly dynamic and aggressive environment.
Therefore, nearly all teams employ omnidirectional motion
system in real MSL matches. To improve the flexibility of
simulated robots and enhance the antagonistic between
simulated robots, the omnidirectional motion based on
our real robot [13] is simulated.

(a) (b)
Fig. 3: Omnidirectional wheel and motion model of the
wheel (a) and base frame of the real robot (b).

Our custom-designed omnidirectional wheel and its
motion model are shown in Fig. 3(a) and the base frame
with four omnidirectional wheels is illustrated in Fig. 3(b).
The omnidirectional wheel consists of a motor-controlled
wheel hub and sixteen passive rollers. Rollers rotate in



the vertical direction perpendicular to the hub rotation
axis, which enables the wheel to move smoothly in any
direction. The radius of omnidirectional wheels is denoted
by r and the rotation speed of the ith wheel hub is
represented by ωi.

(a) (b)
Fig. 4: Layout of omnidirectional locomotion system (a)
and coordinate frames (b).

Fig. 4(a) shows the layout of our omnidirectional loco-
motion system in two dimension plane. The gray rectan-
gles represent four omnidirectional wheels with numbers
from 1 to 4. di denotes the distance between the center
of the ith wheel and the center of the robot. The robot
coordinate frame is presented by xoy with its origin at the
center of the robot.

Fig. 4(b) shows coordinate frames of each omnidirec-
tional wheel. xoy is the robot coordinate frame and x′

io
′
iy

′
i

is the ith wheel coordinate frame attached to the center of
the ith ominidirectional wheel. o′ix′

i is the rotation center
axis of motor hub and o′iy

′′
i is parallel to the rotation center

axis of passive rollers and o′ix
′′
i is perpendicular to o′iy

′′
i . αi

is the angle between ox and oo′i. βi is the deflection angle
of the roller, representing the angle from o′ix

′
i to o′iy

′′
i . γi

is the rotation angle between xoy and x′
io

′
iy

′
i.

The speed of the robot is described by (vx, vx, ω)
T in

xoy. We define W = (w1, w2, w3, w4)
T to describe rotation

speeds of four wheels.
Since four omnidirectional wheels share the same struc-

ture, βi shares the same value, which is denoted by β. All
di are decided by the layout of omnidirectional motion
system and they share the same value d. Besides, o′ix

′
i

coincides with oo′i in our real robots, then:

γi = αi, i = 1, 2, 3, 4. (1)

According to the kinematic analysis of omnidirec-
tional locomotion in [12], [14], the transformation from
(vx, vx, ω)

T to W is described in (2) and (3) and param-
eters are shown in Table 2.

W = A×

 vx
vy
ω

; (2)

A =
1

r
×


−cos(α1+β)

sinβ
−sin(α1+β)

sinβ −d
−cos(α2+β)

sinβ
−sin(α2+β)

sinβ −d
−cos(α3+β)

sinβ
−sin(α3+β)

sinβ −d
−cos(α4+β)

sinβ
−sin(α4+β)

sinβ −d

 (3)

TABLE II: Parameters for the omnidirectional motion

symbol α1 α2 α3 α4 β d
value π

4
3π
4 − 3π

4 −π
4

π
2 0.203(m)

IV. Strategy Subsystem
The strategy subsystem is built to realize multi-robot

strategies, including multi-robot collaboration, multi-
robot path planning, task allocation and so on. Consid-
ering the interface with real robot codes, the framework
of the strategy subsystem is built as a distributed multi-
robot strategy system based on ROS. Its framework is
shown in Fig. 5.

Fig. 5: The framework of the strategy subsystem.

The strategy subsystem is composed of several types
of nodes. The cyan rectangles stand for nodes and the
arrows represent information flow based on topics. Each
node is a process for a specific task and all nodes
are combined together into a graph. Its communication
infrastructure mainly depends on the ROS middleware,
including publish/subscribe anonymous message passing
and request/response remote procedure calls2. The main
nodes are:
Gazebo : The Gazebo node is created by the simulation

subsystem. With the package named gazebo_ros_pkgs3,
the simulation subsystem publishes topic ”OmniVision-
Info” and provides exact statuses of simulation models
for other subsystems.
WorldModel : The Nubot Control node, the World

Model node and the robot model make up a complete
robot. As its name suggests, the World Model node is
built mainly to set up a virtual world, storing the key
information in the simulated environment, including sta-
tuses of models, the coach information and the strategies
of its team.
NubotControl : The Nubot Control node is the core

of the robot. Based on its “world”, the Nubot Control
node makes decisions and sends velocity commands. With

2 http://www.ros.org/core-components/
3 http://gazebosim.org/tutorials?tut=ros_installing&cat=connect_ros



standard interfaces with Gazebo, topic “VelCmd” can
control the motion of the corresponding robot model. For
every robot, the World Model node and the Nubot Control
node are unique and distinct, which comprises the basis
of the distributed strategy subsystem.

StrategyPub : The Strategy Pub node is built for com-
munication between different robots. Because the strategy
subsystem is distributed, every robot does not know its
teammates’ strategies, which are necessary to cooperate
with its teammates. In the real world scenario, robots
share their strategies using RTDB [15]. But it is neither
feasible nor necessary for the simulation because all robots
share the same IP (Internet Protocol) address. Therefore,
the Strategy Pub node is built for the convenient and
reliable communication via ROS messages. It subscribes
to “StrategyInfo” and collects strategy information from
its robots at first. Then, it fuses all strategies and publishes
new “StrategyInfo”.

Coach4sim : The Coach4sim node is an important
component of the scene subsystem. By sending game
commands, included in the topic “receive_from_coach”,
it controls the process of the game.

V. Scene Subsystem
As aforementioned, the scene subsystem is built to

describe a specific scene. However, it is hard to understand
the scene for the robot. Besides, to realize the confronta-
tion, all robots agree on the process of the game. Therefore,
we defines game commands, a series of commands, to
divide the game into a series of stages, which is reasonable
for that a real game is usually the repetition of simple
stages. General speaking, the definition of different stages
is consistent with rules of a specific scene. For example,
a soccer match includes stages of game-start, game-stop,
kick-off, corner-ball, penalty etc. The coach machine and
the automatic referee are able to send game commands to
robots and they are equipped with different functions.

A. The Coach Machine
The coach machine is built for each team. It aims not

only to send game commands but also to realize the
interaction between human and robot players. It is also
a state visualization tool. It displays the various states
of the robot, which can be used to diagnose whether the
robot is in error, and assist in the improvement of the
multi-robot collaborative strategies. The Coach Machine
is built with three basic functions:

(1) Obtaining all information of its robot players.
(2) Sending game commands to robot players and

controlling the process of soccer game.
(3) Visualize information to analyze and design better

multi-robot cooperation strategies.
To ensure a simple and efficient interaction between

human and robot players, a graphical user interface (GUI)
is built (see Fig. 6). The GUI is divided into three areas:
the command area, the display area and the status area.

Fig. 6: The GUI of coach machine

By clicking these command buttons, corresponding game
commands are sent to robot players. The main function
of the display area is to visualize the positions of robot
players, soccer ball and obstacles. In Fig 6, the yellow
circles stand for robot players, and the blue circles stand
for obstacles, including opponent robot players. The status
area is used to exactly show robot players’ statuses,
including the position and orientation, the velocity, the
action, the information of ball dribbling, etc.
B. The Automatic Referee

As stated earlier, the coach machine is built for each
team and it only connects with its robot players, which
makes it difficult to realize a confrontation. Therefore, the
automatic referee is proposed to not only to send game
commands but also to realize a confrontation conveniently.
It is designed to judge automatically robot players’ penal-
ties and send game commands to all robot players.

Fig. 7: A graph of the automatic referee.

A graph of the automatic referee is shown in Fig. 7. The
automatic referee joins in the graph as the auto_referee
node. By subscribing to topic “/gazebo/model_states”
from /gazebo, it obtains exact statuses of all models. Then,
it is able to judge if there is a foul or a goal according
to the rules and sends game commands to all robots by
publishing topic “receive_from_coach”.

VI. Interfaces
As the core of Simatch, the strategy subsystem is built

with two key interfaces, the interface with the simulation
subsystem and the interface with the scene subsystem.
Since these interfaces are based on the ROS topic/service
publishing/subscription mechanism, it enables the appli-
cation of the simulation system in different research fields.



A. Gazebo Interface
The Gazebo interface is mainly built on the basis of

gazebo_ros_pkgs, which provides wrappers around the
stand-alone Gazebo. In Fig. 8, topic “set_model_state”
describes the desired position and velocity of models
and topic “set_link_state” describes the desired posi-
tion and velocity of links. Topic “link_states” and topic
“model_states” consist of the exact status of simulation
models. Besides, the package provides other application
programming interfaces to apply the force and the torque
on simulation models and links. These application pro-
gramming interfaces make it practical to realize various
motions of simulation models, even some motions are very
complicated. Moreover, since application programming
interfaces are standardized, Simatch is able to employ
different models for different scenes. It supports not only
most of featured models from Gazebo, but also self-built
models from researchers such as our simulated soccer
robot. For some specific scenes, it is allowed to build a
brand new simulation models. On the ground of various
simulation models, it is easy to modify the simulated world
of Simatch for any specific scene.

Fig. 8: A graph of the Gazebo.

B. Scene Interface
As shown in Fig. 1, the game command is the only infor-

mation flow from the scene subsystem to the strategy sub-
system. Therefore, the scene interface only includes topic
“receive_from_coach”, which consists of MatchMode and
MatchType. MatchMode represents the current game
command and MatchType records the last valid game
command, which are used to describe an exact stage of
a game. Though the scene interface is very simple, it is
enough to combine effectively the strategy subsystem and
the scene subsystem. Obviously, the scene subsystem is
still highly independent, which makes it feasible to design
various scenes with different game commands.

VII. Validations
A. Test of the Omnidirectional Locomotion

To validate the omnidirectional locomotion of the sim-
ulated model, a series of velocity commands are sent and
the behavior of robots are observed. In this test, the given
velocity commands make up the analytic function of a cir-
cle. The initial status of the robot is (x, y, θ)T = (0, 0, 0)T

in the world coordinate frame. The unit of x and y is cm
and the unit of θ is radian. The context of topic “VelCmd”
is depicted in (4):

(vx, vy, ω)
T = (200, 0, 2)T (4)

The test lasts about 25.56 s and the update step is
about 0.015 s and results are shown in Fig. 9.

(a) (b)
Fig. 9: The trajectory (a) and the orientation (b) of the
robot.

Two indicators are defined to measure the simulated
robot. The first one is the position error, computed by
the difference between the samples’ distance to the given
circle center and the given radius. Another one is the
orientation error, representing the error between actual
orientation and the orientation computed by ω. After
statistical analysis, the average position error of 1704
samples is 2.2481 cm and the average orientation error
is 0.4401 rad. The result proves that the omnidirectional
locomotion model is realized.

B. Simulation of an MSL Match
Firstly, the communication between each side of robots

is tested. In this step, though all robot model are spawned,
just a team of robots run its codes and only one coach
machine is employed. With the GUI of coach machine, we
send game commands to cyan robots and observe statuses
of them. The result is shown in Fig. 10(a) and Fig. 10(b).

(a) (b)

(c) (d)
Fig. 10: Simulation of an MSL match. (a) Simulation with
an active cyan team; (b) Coach for the cyan team; (c)
Cyan’s kick off; (d) Robot players scrambling the ball.

Secondly, we run the automatic referee to control the
game process. And then, the simulated match runs by
itself and the automatic referee makes correct punishment
to robots, which proves that the simulation of an MSL
match is realized.



C. Simulation of an Encirclement
To verify that it is easy to apply Simatch to simulate

other aggressive scenes, we use it to simulate an encir-
clement between sixteen robots, nine chasers (cyan robots)
rounding up another seven targets (magenta robots). The
result is shown in Fig. 11.

(a) (b)
Fig. 11: Simulation of an Encirclement. (a) Cyan robots
round up magenta robots; (b) All magenta robots are
driven into the prison area.

The simulation of an encirclement verifies that not only
the number of robots can be adjusted easily but also the
scene can be modified to different scenarios. Simatch can
be applied to simulate various aggressive scenes between
multi-robot systems.

VIII. Conclusion and Future Work
A. Conclusion

To test multi-robot collaboration strategies in MSL
matches, we set up Simatch based on our previous work.
The paper describes its general architecture and three
subsystems. The simulation subsystem models the sim-
ulated environment and realizes basic motions of simu-
lation models. To improve the flexibility of robots and
enhance the antagonistic between robots, we simulate the
omnidirectional locomotion based on the real robot. The
strategy subsystem originates from the distributed robot
codes. Actually, distributed multi-robot systems have been
widely used in many domains. The scene subsystem is the
key to simulate the confrontation between multi-robot
systems. By sending game commands to all robots, it
controls the process of the match. To combine these inde-
pendent subsystems, two convenient interfaces are built
based on the ROS topic/service publishing/subscription
mechanism, which make Simatch flexible and extensible
enough to be employed in different research fields. Then,
a single robot omnidirectional locomotion test is carried
out and proves that the omnidirectional locomotion is
realized. Later, a simulated MSL match between 10 robot
players is simulated to verify its ability to simulate
the confrontation between multi-robot systems. Finally,
we simulate the encirclement with sixteen robots, which
verifies the flexibility and extensibility of Simatch.

To sum up, Simatch is able to simulate the highly dy-
namic confrontation between multi-robot systems, which
makes tests of adversarial multi-robot strategies conve-
nient and effective, and it promotes studies on adversarial
multi-robot problems. Simatch has been applied to the

MSL simulation match4 in the Chinese Robotics Compe-
tition. Besides, a simulation project5 based on Simatch
has been proposed to promote the development of MSL
in the 2017 MSL international workshop.

B. Future work
Our future work will focus on two aspects. At first, we

will create more simulation models to simulate different
kinematic models, such as drones, to cater for different
application scenarios. Then, we will set up different sim-
ulation worlds and design different application scenarios
to expand the simulation system to other research fields.
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