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Abstract— The explosives detection system plays an im-
portant role in the counter-terrorism field. For the lack
of automated trace explosives detection system, we design
a manipulator-based intelligent trace explosives detection
system for baggage, named AnBot. As far as we know, it is the
first automated trace explosives detection system in China.
To avoid reducing the detector’s sensitivity and selectivity
to explosives, AnBot uses a UR3 manipulator to set up its
sampling subsystem. To set up the system well and quickly,
we build a ROS-based software framework for AnBot. Finally,
the first version of AnBot was designed to accomplish the
automated trace explosives detection process by itself. On
the one hand, it promotes trace explosives detectors’ further
widespread use. On the other hand, the proposed system
makes it possible to incorporate the trace explosives detection
system into the intelligent security network.

I. INTRODUCTION
In the past 20 years, the number of terrorist activities

experienced a dramatical increase [1], which becomes a
growing headache for every country. According to data
released by the Global Terrorism Database (GTD)1,
terrorist bombing is the main form of terrorism. In
2017, the proportion of terrorist bombings in terrorist
attacks was more than 50%. In addition, since terrorist
bombings are more prone to occur in crowded public
places, such as airports and stations, they often cause
large casualties to ordinary people. Therefore, it is
extremely important to enhance explosives detection
in key sites. Generally speaking, the baggage is the
most popular choice to convey explosives. Therefore,
baggage inspection is the most common and important
way to detect explosives. Actually, the development of
explosives detection systems and equipment for baggage
has become an important research topic in the security
field.

Various explosives detectors can be divided into two
categories: bulk detection and trace detection. The for-
mer, including X-ray imaging [2], nuclear quadrupole
resonance (NQR) [3] and neutron techniques [4], is
usually used to get the size and shape of suspicious items.
However, it can’t determine which type the suspicious
item is. On the other hand, the latter, including ion
mobility spectroscopy (IMS) [5], mass spectroscopy (MS)
[6], [7], terahertz spectroscopy [8] and so on, shows very
high sensitivity and selectivity to explosives. The high
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sensitivity and selectivity earns trace detection more
attention and use in the field of explosives detection,
especially IMS and MS. In 2013, more than 50,000 hand-
held IMS analyzers and more than 10,000 bench-top
analyzers were used as explosives detectors in airports
worldwide.

However, most of trace detection devices show a
common drawback. All trace explosives detection devices
only have the detection function and don’t have any
active sampling device. On the one hand, it increases
the use cost of trace detection devices to a certain extent
and limits to its further promotion and application. On
the other hand, it is also an obstacle to the intelligent
security network, which requires as less manual interven-
tions as possible. Therefore, it is of great value to design
an automated explosives detection system.

The critical difference between an automated ex-
plosives detection system and a common detector is
the automated sampling system. In [9], Fulghum et
al. designed a walk-through explosive-trace detection
portal for passengers. It collects particles of explosives
from the human aerodynamic wake and uses the IMS
technique to detect explosives. The system requires
1m3/s airflow, resulting in a relatively low sensitivity.
[10] designed an aerodynamic shoe sampling system
for trace explosives detection, which faces the similar
problem. Yasuaki Takada et al. designed an automated
trace-explosives detection system on the basis of MS
technique [11], [12]. It uses an air jets to remove the
particles adhering to the detection surface and collects
them with a cyclone concentrator. Though it is really a
great work, it still stays in the laboratory until now. To
design an automated sampling system is still a problem.

Meanwhile, various manipulators are used in different
tasks, including sampling, picking and placing, machine
tending and so on. In DARPA Robotics Challenge
(DRC)2, some missions are related closely to the robotic
arm. The main reason for the popularity of manipu-
lators is that they always show great flexibility, high
stability and excellent accuracy. Besides, the motion
planning problem for low dimensional manipulator has
been well solved. An open source project named Optimal
Motion Planning Library (OMPL) [13] provides various
sampling-based motion planning algorithms for manip-
ulators. A motion planning library named Moveit! is
built for any ROS-supported robot3. These open-source
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projects make it possible to apply manipulators easily
and quickly in various applications.

Though the manipulator is so popular, we could not
find any case integrating the manipulator with explosives
detection. The advantage of using manipulator for explo-
sives sampling is obvious. It is similar with the manual
sampling process, and the manipulator sampling system
will never reduce the detector’s sensitivity and selectivity
to explosives. Therefore, we think it is a meaningful
and practical work to design a manipulator-based trace
explosives detection system for baggage. Now, the first
version has been designed and is named AnBot.

This paper is organized as follows. In Section II, the
overall architecture of AnBot is depicted. Section III
describes the mechanical design of AnBot, including its
static base and dynamic sampling subsystem. Then, Sec-
tion IV introduces its software based on ROS, including
some critical techniques. Section V concludes the whole
paper and Section VI summarizes the future work.

II. Overall Architecture
Fig.1 shows the overall architecture of AnBot. The

whole system includes five subsystems with different
color borders. A brief introduction for each subsystem is
provided in the following text.

Fig. 1: The overall architecture of AnBot.
The control subsystem is made up of a PC and

a microprocessor unit (MPU). The computer is the
main processor of the whole system and does the main
calculations including the processing of visual informa-
tion and the planning of the robotic arm. The MPU
completes some simple tasks. It reads the data from
the ranging sensor, obtains the state of the conveyor
belt and opposite photoelectric sensors and sends control
commands to the conveyor belt and the vacuum pump.
At last, we choose Robot Operating System (ROS) to
build up AnBot’s software.

The sampling subsystem includes 3 components: a
robotic arm named UR3, a ranging sensor and a vacuum
pump. The UR3 is an industrial robotic arm from
UNIVERSAL ROBOTS4. A ranging sensor is fixed on
the end of UR3 to determine the distance to the target

4 http://www.universal-robots.cn/site/products-ur3-robot

surface. Besides, there is a vacuum pump equipped
with a vacuum sucker to suck the sampling paper. The
realization of sampling will be introduced in section III.

The vision subsystem is built to detect the sampling
point on the baggage surface and determine its 3D
position. The sampling point is transformed to the target
point for the sampling subsystem later. In our vision
subsystem, a Kinect v2 camera is used to get the 3D
information of the environment.

The transport subsystem is built based on a conveyor
belt. The conveyor belt is driven by a motor and
a frequency converter. By sending “start” signal and
“stop” signal to the frequency converter, we can control
the start and stop of the conveyor belt. Meanwhile, two
pairs of opposite photoelectric sensors are fixed on both
sides of the conveyor belt to locate baggage on the belt.

The detector subsystem includes an explosives de-
tector. A ZA-800BX from Shenzhen ZOAN GAOKE
Electronics Company is chosen for AnBot5. It has the
ability to verify various kinds of military, civil and
indigenous explosives, such as nitroglycerine nitrification,
ammonium nitrate black powder, ammonium nitrate
black powder. For our demand to build up an intelligent
system based on a PC, the detector is added with basic
interfaces with computers.

III. Mechanical Design
This section describes the mechanical design of AnBot.

When designing the platform, we consider two criteria.
On the one hand, the whole system should meet the
rules and regulations of security check, namely its size,
high reliability and so on. On the other hand, the
sampling subsystem should comply with the operating
specification of the explosives detector.

A. Static Base

Fig. 2: The 3D model of AnBot.

As shown in Fig.2, the static base is based on a con-
veyor mechanism with the length of 2.0m, the width of
0.6m and the height of 0.53m. Behind the conveyor belt,

5 http://www.szzoan.com/ProductDetail/1360401.html#



there is enough space to contain various equipment with
a large size, such as the vacuum bump, the controller box
of UR3 and the computer mainframe. A worktop is fixed
firmly at the right side of the conveyor belt. Now, the
explosives detector, the UR3 and the sampling paper
container are fixed on the worktop. Besides, there are
two pairs of opposite photoelectric sensors in the system
to locate baggage on the conveyor belt. It is obvious
that the available sampling area lies in front of the UR3.
Hence, two transmitters are fixed on the left side of the
conveyor belt and two receivers are fixed at the leg of the
worktop. Another non-ignorable component of the static
base is a simple but firm gantry, on which a RGB-D
camera is set. In order to ensure that the camera’s field
of view covers the target area, the camera is tilted with
a certain angle. Fig.3 is an image from the Kinect v2
camera when the baggage locates in the given area.

Fig. 3: The field of view of the Kinect camera and the
borders of the ideal sampling area are painted red.
B. Dynamic Sampling Subsystem

The sampling subsystem is designed to sample on
the baggage surface. The standard manual sampling
includes 3 steps: picking up a piece of sampling paper,
wiping the baggage surface with the sampling paper
and sending the paper into the explosives detector.
Fig.4 shows an explosives detector and its dedicated
sampling paper with the width of 18mm and the length
of 58mm. To accomplish this mission, we design the
peculiar subsystem, which is shown in Fig.5. The UR3
arm is its base frame and completes its motion function.
It has six joints and its motion range is nearly 500mm. A
vacuum sucker and a ranging sensor are fixed on a board
on the UR3’s end. The vacuum pump is used to create
a vacuum environment in the vacuum tube. The other
end of the vacuum tube is the vacuum sucker. With the
low pressure in the vacuum tube, the sucker is able to
suck the paper. It is able to separate a piece of sampling
paper from a pile of sampling paper. Another critical
component of the sucker is the spring, which enables the
sucker to deform along the spring. The ranging sensor
senses the distance from the board to the target surface,
which is used to judge if the sucker gets in touch with
the target surface.

Though the AnBot’s sampling shares the same process
with the manual sampling, there is a micro improvement
to protect the sampling subsystem when the sucker
touches the sampling paper surface or the baggage

(a) (b)
Fig. 4: (a) An explosives detector and (b) its sampling
paper.
surface. At first, the sucker moves right above the target
point. Secondly, the sucker is pressed vertically to the
point. Once the distance is less than a given threshold,
the catch action or the touch action is completed. Finally,
the sucker leaves vertically from the surface.

(a) (b) (c)
Fig. 5: The sampling subsystem: (a) the UR3 robotic
arm, (b) the improved end and (c) the vacuum sucker.

IV. Software Based on ROS
Since this is the first version of AnBot and we want

to promote AnBot to be applied in various sites, it is
extremely important to design a highly modular software
framework for convenient improvements. Considering
the hardware, the software should provide convenient
interface with the UR3 manipulator. Therefore, ROS
becomes the first choice for its high-modularity. Fig.6
shows the software framework of AnBot, which is divided
into 3 main parts: the Kinect Camera Node and the
Vision Node; the Control Node; the UR Driver Node
and the Motion Plan Node. Except from the five nodes,
a node is created for prior hand-eye calibration. They
will be detailed in the following sub-sections.

Fig. 6: The software framework based on ROS.

A. Vision Node
The Vision Node is built to find a proper sampling

point for the robotic arm. Obviously, the 3D information
of the point is needed. Therefore, a Kinect v2 camera
is selected as the “eye” of AnBot. The Kinect Camera
Node drives the camera and provides point cloud data
for the Vision Node. Next, we will explain how we get
the sampling point quickly and accurately.



Fig. 7: The camera coordinate is painted red and the
conveyor belt coordinate is painted blue.

The vision algorithm mainly includes three stages:
down-sampling, segmentation and plane detection. The
first stage is to perform spatial down-sampling of point
cloud data. The data is divided into many 3D grids of
5mm × 5mm × 5mm. For every 3D grid, its position is
the mean of all point clouds contained by it. To avoid
background interference, the second stage is to segment
the ideal sampling area. As mentioned in Section III.A,
the sampling area lies on the conveyor belt and the
camera is fixed on the gantry. A feasible and simple way
is to segment point clouds according to their position
information. With given fixed inclination angle and
height, it is possible to transform point clouds from the
camera coordinate to the conveyor belt coordinate, which
are shown in Fig.7. With given threshold of coordinates,
these point clouds right above the belt are retained.
Later, these selected point clouds are inversely converted
to the camera coordinate. Then, since our system focus
its eyes on suitcases, they always have a flat surface.
Therefore, we use the RANSAC algorithm [14], a plane
detection algorithm, to search the target surface. With
the detected plane and a given motion range of UR3, a
sampling point can be determined easily in the camera
coordinate. Fig.8 shows the result of our vision algorithm
and its average processing time is nearly 0.1484s. The
test is carried out on a laptop with the 8th generation
Core i7 as its processor.

(a) (b)
Fig. 8: The result of our vision algorithm: (a) the original
RGB image (b) the detected baggage surface.

B. Motion Plan Node
The Motion Plan Node aims to plan a safe and

collision-free trajectory for the sampling subsystem. Con-
sidering Moveit! collects most motion planning algorithm
and provides convenient interfaces with the UR3 manip-
ulator, AnBot chooses Moveit! as its motion planning
platform.

In practice, the system has a simple usage environ-
ment. Most of obstacles are static and only the baggage
is uncertain. Furthermore, the baggage also has a regular
size and shape and keeps still during the sampling

process. It means that we could avoid collisions with
static obstacles by improving the manipulator model.
As shown in Fig.9, the manipulator model is added with
the operator board, the detector, the sampling paper
container, the gantry and part of the conveyor belt.

Fig. 9: The improved robot model. The blue box is an
explosives detector, the yellow box is a sampling paper
container and the red box is the transport belt.

As for the uncertain baggage, its approximate size can
be easily determined by the vision subsystem. With an
existing interface from Moveit!, it is practical to insert an
approximate baggage model into the planning scene of
AnBot. Once the sampling process ends, the approximate
baggage model could also be removed from the scene.

Another important component of Moveit! is its motion
planner. Until now, it has integrated a variety of motion
planning algorithms, including sampling-based motion
planning algorithms in OMPL. Due to the low failure
rate and a relatively short planning time of RRT Connect
algorithm [15], it is used in the Motion Plan Node. For
it is a sampling based motion planning algorithm, its
planned trajectories are different from each other. Fig.10
shows a trajectory from the sampling paper container to
the sampling point.

(a) (b)
Fig. 10: The planned trajectory from two angles of view.
The green box is an approximate model of baggage.
C. Hand-eye Calibration

To link the vision subsystem and the sampling sub-
system, hand-eye calibration is an indispensable and
extremely important work. The aim of hand-eye cali-
bration is to obtain the coordinate transformation from
the camera coordinate to the base coordinate, which is
used to transform the sampling point to the target point.

As shown in Fig.11, the hand-eye calibration system is
made up of three parts: the Kinect v2 camera, the UR3



Fig. 11: Four coordinates in the hand-ere calibration
system. The base coordinate is painted red, the end
coordinate is painted blue, the camera coordinate is
painted yellow and the board coordinate is painted green.
To show four coordinates clearly, we move the end
coordinate along the dashed line.

manipulator and a calibration board. The calibration
board is fixed at the end of the manipulator. The
calibration board is from an open-source library named
ArUco, which provides convenient solutions to detect
its markers. Besides, the library creates a ROS package
named “aruco_ros” as its interface with ROS. There
are four coordinates in the system. The first one is the
base coordinate with its origin at the center of UR3’s
base link. The second coordinate is the end coordinate,
which takes the center of the end as its origin. The third
one is the camera coordinate and the last one is the
board coordinate. They are represented by A,B,C and
D respectively and the transformation matrix from c1
to c2 is represented by Tc1c2 , where c1 and c2 is the
symbol of above four coordinates. For example, TAB is
the transformation from the base coordinate to the end
coordinate. According to the definition of transformation
matrices, we could get equation (1).

Tc1c3 = Tc1c2Tc2c3 ; (1)
Therefore, the transformation matrix from the end

coordinate to the board coordinate can be described as:

TDB = TDCTCATAB ; (2)
In equation (2), TDB and TCA are unknown, and TAB

could be calculated with the joint states. As for TDC , it
is able to be computed with the “aruco_ros” package.

If the manipulator has different joint states at m
moments, represented by ti, i = 1, 2, ...,m, we use a
subscript to distinguish the same coordinate at different
moment. For example, A1 is the base coordinate at t1
and Bm denotes the end coordinate at tm. Assuming
the calibration board is fixed firmly enough, the trans-
formation matrix from the end coordinate to the board
coordinate is the same for m moments. On the basis of
(2), (3) is deduced easily.

TDiCiTCiAiTAiBi = TDjCjTCjAjTAjBj , i, j = 1, 2, ..,m;
(3)

For the transformation matrix is non-singular, (3) could
be written as:

T−1
DjCj

TDiCiTCiAi = TCjAjTAjBjT
−1
AiBi

, i, j = 1, 2, ..,m;
(4)

Then, because TCA is our optimization objective, TAB

and TDC are known, (4) becomes a typical equation
in the form of AX = XB. [16] provide practical ways
to solve these equation. The transformation matrix is
represented by a translation vector T (T = (x, y, z)) and
Z−Y −X euler angles (α, β, γ). For it is hard to obtain
the accurate transformation matixa, we repeat the hand-
eye calibration for 7 times and the statistical results are
shown in Table 1. The unit of length is meter (m) and
the unit of angle is radian (rad).
TABLE I: Statistical results of hand-eye calibrations.
Para x(m) y(m) z(m) α(rad) β(rad) γ(rad)
mean -0.785 -0.008 1.004 -0.596 0.014 -0.778
std. 0.008 0.016 0.014 0.006 0.008 0.012

D. Control Node
The Control Node aims to control the whole detection

process, which is depicted in Algorithm 1.
Algorithm 1
1: repeat
2: repeat
3: run the conveyor belt
4: until the baggage lies in the ideal sampling area
5: stop the conveyor belt
6: sample at the baggage
7: detect explosives
8: until there are explosives in the baggage

At first, the transport subsystem conveys the baggage
into the ideal sampling area. In this step, two pairs
of opposite photoelectric sensors are used to locate the
baggage. Once a piece of baggage arrives the sampling
area, the conveyor belt is stopped and the system turns
into the second stage. The vision subsystem detects the
practical sampling point on the baggage surface based on
the results of prior hand-eye calibration. At this time,
the Motion Plan Node plans a feasible and collision-
free trajectory to the target point for the sampling
subsystem. The third stage is to detect explosives with
the explosives detection subsystem. After receiving the
detection command, the detector detects whether there is
an explosive on the sampling paper and returns the result
to the PC. The whole system will run continually until
it detects suspicious baggage. Three pieces of baggage
with different size are tested in our experiments. These
experiments show AnBot is able to complete explosives
detection for baggage by itself. Some videos could be
found at https://youtu.be/MyIGnlqlnn0.

V. CONCLUSIONS
In summary, we presented the whole design of our

manipulator-based automated explosives detection sys-
tem with its overall architecture, mechanical platform,



(a) (b)

(c) (d)
Fig. 12: (a) Three pieces of baggage, (b) AnBot sucks
a piece of sampling paper, (c) AnBot samples on the
baggage surface and (d) Anbot removes the baggage after
explosives detection.

and software framework based on ROS in this paper. The
core of the system is its sampling subsystem based on
a UR3 manipulator. A non-negligible advantage of the
system is that it will not reduce the detector’s sensitivity
and selectivity. To accomplish the automated explosives
detection procedure, we solved some key problems such
as baggage recognition, hand-eye calibration and ma-
nipulator motion planning. Finally, the first version of
AnBot was designed and the experimental results show
that it is potential to be used in the real scene.

As far as we know, the system is the first automated
explosives detection system in China. It integrates the
manipulator with trace explosives detection. We expect
this work to be valuable in the explosives detection
field. On the one hand, the unmanned process of the
entire process can reduce the cost of using trace ex-
plosives detectors and promote the further widespread
use of trace explosives detectors. On the other hand,
the intelligent system can initially realize the unmanned
detection of trace explosives. It means that it is possible
to incorporate the trace detection of explosives into the
intelligent security network, which is of significance in
the security field.

VI. FUTURE WORK
As the first version of our intelligent explosives

detection system, AnBot has some obvious shortcomings.
First of all, the explosives detector only owns basic
control interfaces with the computer, because the
current trace explosives detector is an existing
commercial product. The detector is not initially
developed for our automated detection system. In the
future, we will work with the manufacturer to develop
a trace explosives detector that is more suitable for
automatic detection in the actual application process.
Secondly, in terms of the robotic arm, the current
moving range of the manipulator is limited, and the
existing motion blind zone is large. In the future,
we will try to use a manipulator with larger size.
Finally, in terms of sampling point selection, the
current method is to randomly select sampling points

within the surface of the baggage and the moving
range of the robotic arm. However, the handle of the
suitcase is more likely to contact explosives. Therefore,
we will try to use the machine learning method
to identify and locate the handle of the baggage or
other special positions, and use them as sampling points.
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