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Abstract. A novel real-time local visual feature, namely FAST+LBP,
is proposed in this paper for omnidirectional vision. It combines the ad-
vantages of two computationally simple operators by using Features from
Accelerated Segment Test (FAST) as the feature detector and Local Bi-
nary Patterns (LBP) operator as the feature descriptor. The matching
experiments of the panoramic images from the COLD database are per-
formed to determine its best parameters, and to evaluate and compare
its performance with SIFT. The experimental results show that our al-
gorithm performs better, and features can be extracted in real-time.

1 Introduction

In comparison with global visual features, local visual features have better dis-
criminative power, and are more robust to occlusion. Furthermore, good local vi-
sual features can be invariant to image rotation, image translation, image scale,
changes of view, and even changes of illumination. Thus local visual features
have become increasingly popular in recent years, and they have been applied
very well in many computer/robot vision problems, such as image retrieval,
image stitching, wide baseline matching, object recognition, place recognition,
texture recognition, robot localization, and robot navigation. Local visual fea-
ture algorithm consists of feature detector and feature descriptor, and lots of
algorithms have been proposed. In feature detector, Harris [1], Susan [2], DOG
[3], MSER [4], Harris-Laplace [5], Harris-A�ne [5], Hessian-A�ne [5], Features
from Accelerated Segment Test (FAST) [6], etc. have been designed; in feature
descriptor, SIFT [3], SURF [7], GLOH [8], Local Binary Patterns (LBP) [9], etc.
have been used to calculate the feature vectors over the feature region. Many
researchers have done lots of work on evaluation and comparison of these algo-
rithms [8][10][11][12], while relative source codes (or binaries), and many image
databases have been released for further evaluation with new algorithms.

Although local visual features have so many advantages, a common de�ciency
for most of the existing algorithms is that their computation costs are usually
high. This de�ciency limits the actual application of local visual features, es-
pecially in those situations with high real-time requirements. Therefore several
improved versions of the above algorithms have been proposed to accelerate the



feature detection or description. Fast approximated SIFT is presented in Ref.
[13]. Compared to standard SIFT, it uses a box �lter to calculate the DoM
(Di�erence-of-Mean) images e�ciently based on integral images. The key-points
can then be detected, and the descriptor is also accelerated by using an integral
orientation histogram. The experiments show speed increases by a factor of eight
while the performance is only slightly decreased. In the iterative SIFT [14], the
number of features can be de�ned in advance, so the process of searching the
key-points continues iteratively without the need for sequentially going through
the whole scale space. When it is applied in robot’s localization, the computation
e�ort of the feature extraction and matching process can be reduced as much
as possible while high localization accuracy can be maintained. SURF [7] also
takes the advantage of integral images. In feature detector, SURF approximates
second order Gaussian derivatives with box �lters, and image convolutions with
these box �lters can be computed rapidly by using integral images. In feature
descriptor, Haar wavelet responses, which also can be quickly computed via in-
tegral images, are used to construct the descriptor vector. The experimental
results show that the performance of SURF outperforms its competitors.

Because omnidirectional vision can provide a 360� view of the robot’s envi-
ronment in an image, it has become more and more popular as a visual sensor
for robots. In this paper, we will propose a novel real-time local visual fea-
ture for omnidirectional vision which can be applied in the actual engineering
problems with high real-time requirements. Features from Accelerated Segment
Test (FAST) [6] will be used as the feature detector, and Local Binary Patterns
(LBP) [9] as the feature descriptor, so an algorithm named FAST+LBP will be
designed. The panoramic images in the COLD database [15] will be used to test
our algorithm. The following sections are organized as follows: FAST and LBP
are introduced in section 2; our FAST+LBP is proposed in section 3; the best
algorithm parameters are determined by experiments, and the performance of
FAST+LBP is evaluated and compared with standard SIFT in section 4; section
5 is the conclusion of this paper.

2 FAST and LBP

2.1 FAST

The corner feature is de�ned in FAST detector by the following Segment-Test
algorithm: If more than N contiguous pixels in a Bresenham circle of radius r
around a center pixel p are all brighter than p by some threshold or all darker
than p by some threshold, there is a corner feature at p. Machine learning is
utilized to speed up this corner detection process. Every pixel has 16 attributes
corresponding to the 16 pixels in the Bresenham circle (for r = 3), and each
attribute can be 0, 1 or -1. If a pixel with position x on the circle of p is
brighter(darker) than p, the corresponding attribute is 1(-1). Otherwise, the
attribute is 0. A decision tree can be learned by using ID3 to select the pixels
in the circle which yield the most information about whether the center pixel is
a corner. So a pixel can be classi�ed as a corner feature or not more e�ciently,



which means the Segment-Test algorithm is accelerated. This decision tree is
then converted into C-code, creating a long string of nested if-then-else state-
ments which is compiled and used as a corner detector. Finally non-maximal
suppression is applied to remove corners which have an adjacent corner with
higher value of the sum of the absolute di�erence between the pixels in the circle
and the center pixel.

For N values of 9, 10, 11, and 12, the corresponding FAST algorithms are
named FAST 9, FAST 10, FAST 11, and FAST 12. According to the experiments
in Ref. [6], FAST 9 seems to be the best FAST detector, and it is over �ve times
faster than the quickest non-FAST detector. The FAST algorithm also signi�-
cantly outperforms Harris, DoG, Harris-Laplace, SUSAN, etc. in repeatability,
except in cases with large amounts of added image noise.

2.2 LBP method

LBP is �rstly proposed as texture operator [16][17]. It describes each pixel by the
relative gray values of its neighboring pixels. If the gray value of the neighboring
pixel is higher or equal to that of the center pixel, the binary value is set to be
one, otherwise to be zero. The LBP value of a center pixel in (x, y) position can
be calculated over the neighborhood as follows:

LBPR;N (x; y) =
N�1X

i=0

s(ni � nc)2i; s(t) =
�

1; t � 0
0; otherwise (1)

where nc is the gray value of the center pixel, and ni the gray value of N equally
spaced pixels on a circle of radius R. According to Eq.(1), the LBPR;N value
may be any integer between 0 and 2N � 1. The histogram of the LBPR;N values
computed over an image region (the histogram dimension will be 2N ) can be used
for texture description, and it has been proven to be robust against illumination
changes. It is also very fast to compute.

Several modi�ed versions of LBP method have been described in Ref. [17]
for achieving rotation invariance and reducing the histogram dimension of LBP.
When the image is rotated, the gray value ni will correspondingly move along
the perimeter of the circle around nc, so di�erent LBPR;N may be calculated. To
remove the e�ect of rotation, the �rst modi�ed version with rotation invariance
is de�ned as follows:

LBP ri
R;N (x; y) = minfROR(LBPR;N ; i) j i = 0; 1; :::; N � 1g (2)

where ROR(LBPR;N ; i) performs a circular bit-wise right shift on the N -bit
number LBPR;N i times. LBP ri

R;N can have 36 di�erent values when N = 8, and
the histogram dimension of LBP ri

R;N over an image region is 36.
In the second version named as uniform LBP, at most two one-to-zero or

zero-to-one transitions in the circular binary code are allowed, so whether a
LBP is uniform can be judged by the following de�nition:

U(LBPR;N ) = js(nN�1 � nc) � s(n0 � nc)j +
N�1X

i=1

js(ni � nc) � s(ni�1 � nc)j (3)



If U(LBPR;N ) � 2, the LBP is uniform. The uniform LBP, expressed as LBP u2
R;N ,

can have N(N � 1) + 2 di�erent values, so the histogram dimension of LBP u2
R;N

over an image region is N(N � 1) + 2 + 1 (the �nal 1 corresponds to those
non-uniform LBP).

The third version is the uniform LBP with rotation invariance which com-
bines the above two modi�cations. So LBP riu2

R;N value is computed as follows:

LBP riu2
R;N (x; y) =

� PN�1
i=0 s(ni � nc); U(LBPR;N ) � 2

N + 1; otherwise
(4)

LBP riu2
R;N value can have N + 1 + 1 di�erent values, so the histogram dimension

of LBP riu2
R;N over an image region is N + 1 + 1.

All the three modi�ed LBP versions can be considered to be a mapping from
the original LBP with wide value range to the corresponding modi�ed LBP with
narrow value range, so the histogram dimension can be reduced with di�erent
extents. In practice, the mapping process is implemented by a look-up table
which can be created in advance according to the di�erent mapping mode.

3 Our Novel Real-Time Local Visual Feature

Our novel real-time local visual feature, namely FAST+LBP, is divided into three
steps: feature detector, feature region determination, and feature descriptor.

3.1 FAST feature detector

Because the FAST 9 algorithm has a low computation cost and excellent per-
formance in repeatability, it was chosen as the feature detector. The typical
panoramic images and the corner features detected by FAST 9 are demonstrated
in Fig.1. The images are from the COLD database [15]. The two images are cap-
tured by the robot’s omnidirectional vision in two di�erent positions. The robot’s
translation is 0.7561 m, and the rotation is 0.9053 rad.

3.2 Feature region determination

After a corner feature has been detected, a surrounding image region should
be determined, and then a descriptor can be extracted from the image region.
Some a�ne invariant feature detectors [5] have been proposed to adapt the fea-
ture region to a�ne transformations by iterative algorithms. Although they can
provide better performance, the computation complexity increases signi�cantly
[5]. Therefore we do not consider a�ne invariance for our real-time local visual
feature algorithm. We adopt the feature region determining method proposed
in Ref. [18]. Rectangular image regions surrounding corner features are �rstly
determined in the radial direction, and then rotated to a �xed orientation, as
shown in Fig.2. Fig.2(a) shows how a determined feature region is rotated to the
�xed orientation. During the rotation process, bilinear interpolation is used.



(a) (b)

Fig. 1. A pair of panoramic images from the COLD database and the feature detecting
results by FAST 9. The green points are the detected corner features.

In the next section we will compare this feature region determining method
with the one which determines feature regions directly in horizontal and vertical
directions through experimentation. The size of each feature region is also an
important parameter, and the best size will be determined in the next section.

(a) (b)

Fig. 2. (a) The blue rectangle is a feature region, and it is rotated by angle � to a �xed
orientation. The small region on the top left of the image is the rotated feature region.
(b) The di�erent grids that the feature region can be divided into. From left to right:
1�1 cell, 2�2 cells, 3�3 cells, 4�4 cells.

3.3 Feature descriptor with LBP

The �nal step of local visual feature algorithm is to describe the features by cal-
culating vectors according to the information of feature regions. Recently, LBP
has been used as feature descriptor in Ref. [9], and the strength of SIFT de-
scriptor is also combined. The SIFT-like grid is used, but SIFT gradient features
are replaced by LBP-based features. In this paper, we use the same approach to
extract descriptors for the detected features by FAST.



A LBP value for each pixel of the feature region can be calculated according
to the introduction in section 2.2. In order to incorporate spatial information
into the descriptor, the feature region can be divided into di�erent grids such
as 1�1 cell, 2�2 cells, 3�3 cells, 4�4 cells, as shown in Fig.2(b). For each cell,
the histogram of LBP values is created, and then all the histograms are con-
catenated into a vector as the descriptor. Finally, the descriptor is normalized
to unit length. The descriptor dimension is M�M�the histogram dimension
for M�M cells. Therefore, the resulting descriptor is a 3D histogram of LBP
feature locations and LBP values. In calculating the histogram, the LBP values
can be weighted with a Gaussian window overlaid over the whole feature region,
or with uniform weights over the whole region. The latter means that the feature
weighting is omitted.

The performance and dimension of LBP descriptor will be a�ected greatly by
di�erent algorithm parameters such as the number of cells, di�erent R and N ,
Gaussian or uniform weighting, LBP mode including the original LBP, LBPri,
LBPu2, and LBPriu2 as introduced in section 2.2. The best parameters will be
determined by experiments in the next section.

4 Experimental Evaluation and Discussion

In this section, we will introduce the experimental setup �rstly, and then de-
termine the best parameters for FAST+LBP by experiments. The performance
and the needed computation time of our algorithm will be compared with SIFT.

4.1 Experimental setup

COLD is a freely available database which provides a large-scale, exible testing
environment for robot’s vision-based topological localization [15]. The panoramic
images are captured by the same omnidirectional vision in di�erent rooms and
under various light conditions. We will use the typical panoramic images and
image series to perform our experiments.

When local visual features are applied in robot’s localization, robot’s SLAM,
etc., the features should be matched between the image pairs captured in dif-
ferent imaging conditions, such as di�erent robot positions and various lighting
conditions. Therefore we evaluate the performance of local visual feature ac-
cording to the feature matching results. For each feature descriptor in an image,
We calculate its Euclidean distances with all the feature descriptors in another
image needing to be matched. We consider that a match is found between the
feature pair with the closest distance if the ratio of the closest to second-closest
distance is smaller than threshold Tratio [3] as follows:

ratio =
the closest distance

the second � closest distance
� Tratio (5)

In this paper, we will evaluate the overall performance of local visual feature
as a whole, but not evaluate the detector and descriptor independently as in Ref.



[5][6][8][9]. Therefore we use matching score versus 1�precision as the criterion
for performance evaluation, instead of recall versus 1 � precision which is used
to evaluate the descriptor’s performance in Ref. [8][9]. We de�ne matching score
in the same way as Ref. [10]:

matching score =
the number of correct matches

the smaller number of features in the pair of images
(6)

We de�ne 1 � precision as follows in the same way as Ref. [8][9]:

1�precision =
the number of false matches

the number of correct matches + the number of false matches
(7)

After the feature matching is �nished, an 18 bin histogram is created from
4�i = normalize(�i ��

0

i) using all the matched features, where �i and �
0

i are the
rotated angles of the ith pair of matched features relative to the �xed orientation
in section 3.2, and normalize(:) means normalizing the angle to [0, 2�). Accord-
ing to the character of omnidirectional vision, the relative angle of each pair of
correctly matched features, namely ’, should be almost the same, so it can be
estimated by computing the mean value of those 4�i falling into the highest bin,
and ’ is the rotation angle of robot approximately. If j4�i � ’j < Tangle, where
Tangle is the threshold determined by experiments, the match related to 4�i is
a correct match. Otherwise, it is a false match.

As we change the threshold Tratio, the curve of matching score versus 1 �
precision can be acquired to evaluate the performance of algorithms.

4.2 Parameter evaluation for FAST+LBP

The evaluation of di�erent parameter settings for FAST+LBP is carried out in
this experiment to determine the best parameters. As presented in section 3,
six parameters will a�ect the performance of FAST+LBP. We will test their
di�erent settings as follows:

The size of the feature region: 15�15, 19�19, 23�23, 27�27, 31�31, 35�35,
39�39, 43�43 pixels; the feature region determining method: method 1{determining
the feature’s rectangular region directly in horizontal and vertical directions,
method 2{determining the rectangular region in the radial direction and then
rotating it to a �xed orientation as proposed in section 3.2; the number of grids:
1�1 cell, 2�2 cells, 3�3 cells, 4�4 cells; the N and R: N = 8 and R = 1, N = 16
and R = 2, N = 24 and R = 3; the LBP mode: the original LBP, LBPri, LBPu2,
LBPriu2; the weighting strategy: Gaussian weighting, uniform weighting.

Because of a huge amount of di�erent combinations of above parameters,
only one parameter is varied at a time while the others are kept �xed. The pair
of images in Fig.1 are used to perform the feature matching, and the curves of
matching score versus 1 � precision with di�erent parameters are shown in
Fig.3. The red curves in Fig.3 represent the best parameters. From the match-
ing results, we see that 27�27 pixels for the feature region, region determining



Fig. 3. Parameter evaluation results for FAST+LBP. Only one parameter is varied at
a time while the others are kept �xed with the best parameters.

method 2, 2�2 cells, N = 8, R = 1, LBPu2, and Gaussian weighting provide
the best performance for FAST+LBP. The descriptor dimension of our �nal
FAST+LBP is 2�2�(8 � 7 + 2 + 1)=236, as shown in Fig.4.

(a) (b)

Fig. 4. Our �nal FAST+LBP. (a) The scale-up feature region which is divided into
2�2 cells. (b) The resulting feature descriptor.

4.3 Performance comparison of FAST+LBP and SIFT

The performance comparison of FAST+LBP and SIFT is carried out in this
experiment. The SIFT we adopt is implemented by Andrea Vedaldi [19]. Because



most of the current robot’s cameras are color ones, and the images in the COLD
database are color images, we also compare the color version of FAST+LBP
together. In our color version of FAST+LBP, the feature detector still uses the
gray values of images, but the descriptor is computed in all of the R, G, B color
channel, so its dimension is three times of that of the gray version. Two pairs of
images are used. The �rst one is that in Fig.1, and they are acquired when the
robot is translated and rotated. The second pair of images are captured when
the robot is in the same position but under di�erent lighting conditions. The
matching results of these two pairs of images are depicted in Fig.5 (a) and (b)
respectively.
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(b)

Fig. 5. The performance comparison of FAST+LBP, color version of FAST+LBP, and
SIFT. (a) Robot is translated and rotated. (b) Under di�erent lighting conditions.

We �x the threshold Tratio as 0.95 after making a compromise between
matching score and precision. The matching result of the pair of images in
Fig.1 by FAST+LBP with this threshold is shown in Fig.6. Then we can evaluate
how matching score changes with the di�erent imaging conditions of omnidirec-
tional vision caused by the robot’s translation, rotation, and di�erent lighting
conditions. Three image series are used in this evaluation. The �rst one includes
30 images which are acquired as the robot is only translated. The translation
increases with the image number, and the maximal translation is 1.7975 m. The
second one includes 17 images which are acquired as the robot is only rotated.
The rotation increases with the image number, and the maximal rotation is �.
The third one includes 5 images which are acquired in the same position and
under di�erent lighting conditions. We perform the feature matching between
the �rst image and all the other images in each series, so how matching score
changes with di�erent imaging conditions is acquired, as shown in Fig.7.

From the above experimental results, we clearly see that FAST+LBP pro-
vides better performance than SIFT in image matching, and it is a excellent
local visual feature for omnidirectional vision. The matching results are not bad
even when the robot is translated and rotated greatly and the lighting conditions



are very di�erent. So FAST+LBP is robust to rotation, di�erent lighting con-
ditions, and robot’s certain translation. The color version seems a little better
than the gray version. However, its computation cost is much higher, because
the descriptor of the color version should be computed in each of the three color
channels. Furthermore, it takes much more time to match features for the color
version because of the larger descriptor dimension. So we prefer the gray version
rather than the color version.

Fig. 6. The matching results of the pair of images in Fig.1 by FAST+LBP. The cyan
lines represent the correct matches, and the red lines represent the false matches.
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Fig. 7. The matching score with di�erent imaging conditions by FAST+LBP, color
version of FAST+LBP, and SIFT. (left) The robot is only translated. (middle) The
robot is only rotated. (right) Under di�erent lighting conditions.

4.4 Comparison of the needed computation time

In this experiment, we collect 125 panoramic images from the COLD database,
and then extract local visual features from these images using FAST+LBP and
SIFT respectively. Our FAST+LBP is implemented by C++, and the SIFT
we use is implemented by C++ and Matlab using C-Mex technique [19]. The



computer is equipped with 2.26GHz Duo CPU and 1.0G memory. The number of
features, the time needed to extract all the features in an image, and the average
time needed to extract one feature are demonstrated in Fig.8. The time needed in
the three steps of FAST+LBP is also shown. We see that FAST+LBP extracts
about 150�350 features per image, less than SIFT, but it can be performed
much faster. After doing statistics on the computation time, we �nd that the
time needed to extract all the features by SIFT in an image is 508 times that
of FAST+LBP, and the average time needed to extract one feature by SIFT is
115 times that of FAST+LBP. The computation time needed to extract all the
features in an image by FAST+LBP is from 5ms to 20ms, so it can be performed
in real-time.

Fig. 8. The comparison of the needed computation time by FAST+LBP and SIFT.

5 Conclusions

A novel local visual feature, namely FAST+LBP, is proposed for omnidirec-
tional vision. It combines the advantages of two computationally simple oper-
ators by using FAST as the feature detector and LBP operator as the feature
descriptor. The best algorithm parameters were determined by experiments. The
comparisons between FAST+LBP, color version of FAST+LBP, and SIFT were
performed, and the experimental results show that our algorithm has better
performance than SIFT, and features can be extracted in real-time. Our local
visual feature can be applied to computer/robot vision tasks with high real-time
requirements.
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