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Abstract. A novel real-time local visual feature, namely FAST+LBP,
is proposed in this paper for omnidirectional vision. It combines the ad-
vantages of two computationally simple operators by using Features from
Accelerated Segment Test (FAST) as the feature detector and Local Bi-
nary Patterns (LBP) operator as the feature descriptor. The matching
experiments of the panoramic images from the COLD database are per-
formed to determine its best parameters, and to evaluate and compare
its performance with SIFT. The experimental results show that our al-
gorithm performs better, and features can be extracted in real-time.

1 Introduction

In comparison with global visual features, local visual features have better dis-
criminative power, and are more robust to occlusion. Furthermore, good local vi-
sual features can be invariant to image rotation, image translation, image scale,
changes of view, and even changes of illumination. Thus local visual features
have become increasingly popular in recent years, and they have been applied
very well in many computer/robot vision problems, such as image retrieval,
image stitching, wide baseline matching, object recognition, place recognition,
texture recognition, robot localization, and robot navigation. Local visual fea-
ture algorithm consists of feature detector and feature descriptor, and lots of
algorithms have been proposed. In feature detector, Harris [1], Susan [2], DOG
[3], MSER [4], Harris-Laplace [5], Harris-Affine [5], Hessian-Affine [5], Features
from Accelerated Segment Test (FAST) [6], etc. have been designed; in feature
descriptor, SIFT [3], SURF [7], GLOH [8], Local Binary Patterns (LBP) [9], etc.
have been used to calculate the feature vectors over the feature region. Many
researchers have done lots of work on evaluation and comparison of these algo-
rithms [8][10][11][12], while relative source codes (or binaries), and many image
databases have been released for further evaluation with new algorithms.

Although local visual features have so many advantages, a common deficiency
for most of the existing algorithms is that their computation costs are usually
high. This deficiency limits the actual application of local visual features, es-
pecially in those situations with high real-time requirements. Therefore several
improved versions of the above algorithms have been proposed to accelerate the



feature detection or description. Fast approximated SIFT is presented in Ref.
[13]. Compared to standard SIFT, it uses a box filter to calculate the DoM
(Difference-of-Mean) images efficiently based on integral images. The key-points
can then be detected, and the descriptor is also accelerated by using an integral
orientation histogram. The experiments show speed increases by a factor of eight
while the performance is only slightly decreased. In the iterative SIFT [14], the
number of features can be defined in advance, so the process of searching the
key-points continues iteratively without the need for sequentially going through
the whole scale space. When it is applied in robot’s localization, the computation
effort of the feature extraction and matching process can be reduced as much
as possible while high localization accuracy can be maintained. SURF [7] also
takes the advantage of integral images. In feature detector, SURF approximates
second order Gaussian derivatives with box filters, and image convolutions with
these box filters can be computed rapidly by using integral images. In feature
descriptor, Haar wavelet responses, which also can be quickly computed via in-
tegral images, are used to construct the descriptor vector. The experimental
results show that the performance of SURF outperforms its competitors.

Because omnidirectional vision can provide a 360∘ view of the robot’s envi-
ronment in an image, it has become more and more popular as a visual sensor
for robots. In this paper, we will propose a novel real-time local visual fea-
ture for omnidirectional vision which can be applied in the actual engineering
problems with high real-time requirements. Features from Accelerated Segment
Test (FAST) [6] will be used as the feature detector, and Local Binary Patterns
(LBP) [9] as the feature descriptor, so an algorithm named FAST+LBP will be
designed. The panoramic images in the COLD database [15] will be used to test
our algorithm. The following sections are organized as follows: FAST and LBP
are introduced in section 2; our FAST+LBP is proposed in section 3; the best
algorithm parameters are determined by experiments, and the performance of
FAST+LBP is evaluated and compared with standard SIFT in section 4; section
5 is the conclusion of this paper.

2 FAST and LBP

2.1 FAST

The corner feature is defined in FAST detector by the following Segment-Test
algorithm: If more than 𝑁 contiguous pixels in a Bresenham circle of radius 𝑟
around a center pixel 𝑝 are all brighter than 𝑝 by some threshold or all darker
than 𝑝 by some threshold, there is a corner feature at 𝑝. Machine learning is
utilized to speed up this corner detection process. Every pixel has 16 attributes
corresponding to the 16 pixels in the Bresenham circle (for 𝑟 = 3), and each
attribute can be 0, 1 or -1. If a pixel with position 𝑥 on the circle of 𝑝 is
brighter(darker) than 𝑝, the corresponding attribute is 1(-1). Otherwise, the
attribute is 0. A decision tree can be learned by using ID3 to select the pixels
in the circle which yield the most information about whether the center pixel is
a corner. So a pixel can be classified as a corner feature or not more efficiently,



which means the Segment-Test algorithm is accelerated. This decision tree is
then converted into C-code, creating a long string of nested if-then-else state-
ments which is compiled and used as a corner detector. Finally non-maximal
suppression is applied to remove corners which have an adjacent corner with
higher value of the sum of the absolute difference between the pixels in the circle
and the center pixel.

For 𝑁 values of 9, 10, 11, and 12, the corresponding FAST algorithms are
named FAST 9, FAST 10, FAST 11, and FAST 12. According to the experiments
in Ref. [6], FAST 9 seems to be the best FAST detector, and it is over five times
faster than the quickest non-FAST detector. The FAST algorithm also signifi-
cantly outperforms Harris, DoG, Harris-Laplace, SUSAN, etc. in repeatability,
except in cases with large amounts of added image noise.

2.2 LBP method

LBP is firstly proposed as texture operator [16][17]. It describes each pixel by the
relative gray values of its neighboring pixels. If the gray value of the neighboring
pixel is higher or equal to that of the center pixel, the binary value is set to be
one, otherwise to be zero. The LBP value of a center pixel in (𝑥, 𝑦) position can
be calculated over the neighborhood as follows:

𝐿𝐵𝑃𝑅,𝑁 (𝑥, 𝑦) =

𝑁−1∑
𝑖=0

𝑠(𝑛𝑖 − 𝑛𝑐)2
𝑖, 𝑠(𝑡) =

{
1, 𝑡 ≥ 0
0, otherwise

(1)

where 𝑛𝑐 is the gray value of the center pixel, and 𝑛𝑖 the gray value of 𝑁 equally
spaced pixels on a circle of radius 𝑅. According to Eq.(1), the 𝐿𝐵𝑃𝑅,𝑁 value
may be any integer between 0 and 2𝑁 − 1. The histogram of the 𝐿𝐵𝑃𝑅,𝑁 values
computed over an image region (the histogram dimension will be 2𝑁 ) can be used
for texture description, and it has been proven to be robust against illumination
changes. It is also very fast to compute.

Several modified versions of LBP method have been described in Ref. [17]
for achieving rotation invariance and reducing the histogram dimension of LBP.
When the image is rotated, the gray value 𝑛𝑖 will correspondingly move along
the perimeter of the circle around 𝑛𝑐, so different 𝐿𝐵𝑃𝑅,𝑁 may be calculated. To
remove the effect of rotation, the first modified version with rotation invariance
is defined as follows:

𝐿𝐵𝑃 𝑟𝑖
𝑅,𝑁 (𝑥, 𝑦) = 𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃𝑅,𝑁 , 𝑖) ∣ 𝑖 = 0, 1, ..., 𝑁 − 1} (2)

where 𝑅𝑂𝑅(𝐿𝐵𝑃𝑅,𝑁 , 𝑖) performs a circular bit-wise right shift on the 𝑁 -bit
number 𝐿𝐵𝑃𝑅,𝑁 𝑖 times. 𝐿𝐵𝑃 𝑟𝑖

𝑅,𝑁 can have 36 different values when 𝑁 = 8, and

the histogram dimension of 𝐿𝐵𝑃 𝑟𝑖
𝑅,𝑁 over an image region is 36.

In the second version named as uniform LBP, at most two one-to-zero or
zero-to-one transitions in the circular binary code are allowed, so whether a
LBP is uniform can be judged by the following definition:

𝑈(𝐿𝐵𝑃𝑅,𝑁 ) = ∣𝑠(𝑛𝑁−1−𝑛𝑐)− 𝑠(𝑛0−𝑛𝑐)∣+
𝑁−1∑
𝑖=1

∣𝑠(𝑛𝑖−𝑛𝑐)− 𝑠(𝑛𝑖−1−𝑛𝑐)∣ (3)



If 𝑈(𝐿𝐵𝑃𝑅,𝑁 ) ≤ 2, the LBP is uniform. The uniform LBP, expressed as 𝐿𝐵𝑃𝑢2
𝑅,𝑁 ,

can have 𝑁(𝑁 − 1) + 2 different values, so the histogram dimension of 𝐿𝐵𝑃𝑢2
𝑅,𝑁

over an image region is 𝑁(𝑁 − 1) + 2 + 1 (the final 1 corresponds to those
non-uniform LBP).

The third version is the uniform LBP with rotation invariance which com-
bines the above two modifications. So 𝐿𝐵𝑃 𝑟𝑖𝑢2

𝑅,𝑁 value is computed as follows:

𝐿𝐵𝑃 𝑟𝑖𝑢2
𝑅,𝑁 (𝑥, 𝑦) =

{∑𝑁−1
𝑖=0 𝑠(𝑛𝑖 − 𝑛𝑐), 𝑈(𝐿𝐵𝑃𝑅,𝑁 ) ≤ 2

𝑁 + 1, otherwise
(4)

𝐿𝐵𝑃 𝑟𝑖𝑢2
𝑅,𝑁 value can have 𝑁 + 1+ 1 different values, so the histogram dimension

of 𝐿𝐵𝑃 𝑟𝑖𝑢2
𝑅,𝑁 over an image region is 𝑁 + 1 + 1.

All the three modified LBP versions can be considered to be a mapping from
the original LBP with wide value range to the corresponding modified LBP with
narrow value range, so the histogram dimension can be reduced with different
extents. In practice, the mapping process is implemented by a look-up table
which can be created in advance according to the different mapping mode.

3 Our Novel Real-Time Local Visual Feature

Our novel real-time local visual feature, namely FAST+LBP, is divided into three
steps: feature detector, feature region determination, and feature descriptor.

3.1 FAST feature detector

Because the FAST 9 algorithm has a low computation cost and excellent per-
formance in repeatability, it was chosen as the feature detector. The typical
panoramic images and the corner features detected by FAST 9 are demonstrated
in Fig.1. The images are from the COLD database [15]. The two images are cap-
tured by the robot’s omnidirectional vision in two different positions. The robot’s
translation is 0.7561 m, and the rotation is 0.9053 rad.

3.2 Feature region determination

After a corner feature has been detected, a surrounding image region should
be determined, and then a descriptor can be extracted from the image region.
Some affine invariant feature detectors [5] have been proposed to adapt the fea-
ture region to affine transformations by iterative algorithms. Although they can
provide better performance, the computation complexity increases significantly
[5]. Therefore we do not consider affine invariance for our real-time local visual
feature algorithm. We adopt the feature region determining method proposed
in Ref. [18]. Rectangular image regions surrounding corner features are firstly
determined in the radial direction, and then rotated to a fixed orientation, as
shown in Fig.2. Fig.2(a) shows how a determined feature region is rotated to the
fixed orientation. During the rotation process, bilinear interpolation is used.



(a) (b)

Fig. 1. A pair of panoramic images from the COLD database and the feature detecting
results by FAST 9. The green points are the detected corner features.

In the next section we will compare this feature region determining method
with the one which determines feature regions directly in horizontal and vertical
directions through experimentation. The size of each feature region is also an
important parameter, and the best size will be determined in the next section.

(a) (b)

Fig. 2. (a) The blue rectangle is a feature region, and it is rotated by angle 𝜃 to a fixed
orientation. The small region on the top left of the image is the rotated feature region.
(b) The different grids that the feature region can be divided into. From left to right:
1×1 cell, 2×2 cells, 3×3 cells, 4×4 cells.

3.3 Feature descriptor with LBP

The final step of local visual feature algorithm is to describe the features by cal-
culating vectors according to the information of feature regions. Recently, LBP
has been used as feature descriptor in Ref. [9], and the strength of SIFT de-
scriptor is also combined. The SIFT-like grid is used, but SIFT gradient features
are replaced by LBP-based features. In this paper, we use the same approach to
extract descriptors for the detected features by FAST.



A LBP value for each pixel of the feature region can be calculated according
to the introduction in section 2.2. In order to incorporate spatial information
into the descriptor, the feature region can be divided into different grids such
as 1×1 cell, 2×2 cells, 3×3 cells, 4×4 cells, as shown in Fig.2(b). For each cell,
the histogram of LBP values is created, and then all the histograms are con-
catenated into a vector as the descriptor. Finally, the descriptor is normalized
to unit length. The descriptor dimension is 𝑀×𝑀×𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
for 𝑀×𝑀 cells. Therefore, the resulting descriptor is a 3D histogram of LBP
feature locations and LBP values. In calculating the histogram, the LBP values
can be weighted with a Gaussian window overlaid over the whole feature region,
or with uniform weights over the whole region. The latter means that the feature
weighting is omitted.

The performance and dimension of LBP descriptor will be affected greatly by
different algorithm parameters such as the number of cells, different 𝑅 and 𝑁 ,
Gaussian or uniform weighting, LBP mode including the original LBP, LBP𝑟𝑖,
LBP𝑢2, and LBP𝑟𝑖𝑢2 as introduced in section 2.2. The best parameters will be
determined by experiments in the next section.

4 Experimental Evaluation and Discussion

In this section, we will introduce the experimental setup firstly, and then de-
termine the best parameters for FAST+LBP by experiments. The performance
and the needed computation time of our algorithm will be compared with SIFT.

4.1 Experimental setup

COLD is a freely available database which provides a large-scale, flexible testing
environment for robot’s vision-based topological localization [15]. The panoramic
images are captured by the same omnidirectional vision in different rooms and
under various light conditions. We will use the typical panoramic images and
image series to perform our experiments.

When local visual features are applied in robot’s localization, robot’s SLAM,
etc., the features should be matched between the image pairs captured in dif-
ferent imaging conditions, such as different robot positions and various lighting
conditions. Therefore we evaluate the performance of local visual feature ac-
cording to the feature matching results. For each feature descriptor in an image,
We calculate its Euclidean distances with all the feature descriptors in another
image needing to be matched. We consider that a match is found between the
feature pair with the closest distance if the ratio of the closest to second-closest
distance is smaller than threshold 𝑇𝑟𝑎𝑡𝑖𝑜 [3] as follows:

𝑟𝑎𝑡𝑖𝑜 =
𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑− 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
≤ 𝑇𝑟𝑎𝑡𝑖𝑜 (5)

In this paper, we will evaluate the overall performance of local visual feature
as a whole, but not evaluate the detector and descriptor independently as in Ref.



[5][6][8][9]. Therefore we use𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1−𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 as the criterion
for performance evaluation, instead of 𝑟𝑒𝑐𝑎𝑙𝑙 𝑣𝑒𝑟𝑠𝑢𝑠 1− 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 which is used
to evaluate the descriptor’s performance in Ref. [8][9]. We define 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒
in the same way as Ref. [10]:

𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
(6)

We define 1− 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 as follows in the same way as Ref. [8][9]:

1−𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠+ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
(7)

After the feature matching is finished, an 18 bin histogram is created from
△𝜃𝑖 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜃𝑖−𝜃

′
𝑖) using all the matched features, where 𝜃𝑖 and 𝜃

′
𝑖 are the

rotated angles of the 𝑖th pair of matched features relative to the fixed orientation
in section 3.2, and 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(.) means normalizing the angle to [0, 2𝜋). Accord-
ing to the character of omnidirectional vision, the relative angle of each pair of
correctly matched features, namely 𝜑, should be almost the same, so it can be
estimated by computing the mean value of those △𝜃𝑖 falling into the highest bin,
and 𝜑 is the rotation angle of robot approximately. If ∣△𝜃𝑖 −𝜑∣ < 𝑇𝑎𝑛𝑔𝑙𝑒, where
𝑇𝑎𝑛𝑔𝑙𝑒 is the threshold determined by experiments, the match related to △𝜃𝑖 is
a correct match. Otherwise, it is a false match.

As we change the threshold 𝑇𝑟𝑎𝑡𝑖𝑜, the curve of 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1−
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 can be acquired to evaluate the performance of algorithms.

4.2 Parameter evaluation for FAST+LBP

The evaluation of different parameter settings for FAST+LBP is carried out in
this experiment to determine the best parameters. As presented in section 3,
six parameters will affect the performance of FAST+LBP. We will test their
different settings as follows:

The size of the feature region: 15×15, 19×19, 23×23, 27×27, 31×31, 35×35,
39×39, 43×43 pixels; the feature region determining method: method 1–determining
the feature’s rectangular region directly in horizontal and vertical directions,
method 2–determining the rectangular region in the radial direction and then
rotating it to a fixed orientation as proposed in section 3.2; the number of grids:
1×1 cell, 2×2 cells, 3×3 cells, 4×4 cells; the 𝑁 and 𝑅: 𝑁 = 8 and 𝑅 = 1, 𝑁 = 16
and 𝑅 = 2, 𝑁 = 24 and 𝑅 = 3; the LBP mode: the original LBP, LBP𝑟𝑖, LBP𝑢2,
LBP𝑟𝑖𝑢2; the weighting strategy: Gaussian weighting, uniform weighting.

Because of a huge amount of different combinations of above parameters,
only one parameter is varied at a time while the others are kept fixed. The pair
of images in Fig.1 are used to perform the feature matching, and the curves of
𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 with different parameters are shown in
Fig.3. The red curves in Fig.3 represent the best parameters. From the match-
ing results, we see that 27×27 pixels for the feature region, region determining



Fig. 3. Parameter evaluation results for FAST+LBP. Only one parameter is varied at
a time while the others are kept fixed with the best parameters.

method 2, 2×2 cells, 𝑁 = 8, 𝑅 = 1, LBP𝑢2, and Gaussian weighting provide
the best performance for FAST+LBP. The descriptor dimension of our final
FAST+LBP is 2×2×(8× 7 + 2 + 1)=236, as shown in Fig.4.

(a) (b)

Fig. 4. Our final FAST+LBP. (a) The scale-up feature region which is divided into
2×2 cells. (b) The resulting feature descriptor.

4.3 Performance comparison of FAST+LBP and SIFT

The performance comparison of FAST+LBP and SIFT is carried out in this
experiment. The SIFT we adopt is implemented by Andrea Vedaldi [19]. Because



most of the current robot’s cameras are color ones, and the images in the COLD
database are color images, we also compare the color version of FAST+LBP
together. In our color version of FAST+LBP, the feature detector still uses the
gray values of images, but the descriptor is computed in all of the R, G, B color
channel, so its dimension is three times of that of the gray version. Two pairs of
images are used. The first one is that in Fig.1, and they are acquired when the
robot is translated and rotated. The second pair of images are captured when
the robot is in the same position but under different lighting conditions. The
matching results of these two pairs of images are depicted in Fig.5 (a) and (b)
respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FAST+LBP

SIFT

FAST+LBP Color Version

1−precision

m
at

ch
in

g 
sc

or
e

The performance of the local visual features when the robot is translated and rotated

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FAST+LBP

SIFT

FAST+LBP Color Version

1−precision

m
at

ch
in

g 
sc

or
e

The performance of the local visual features under different light conditions

(b)

Fig. 5. The performance comparison of FAST+LBP, color version of FAST+LBP, and
SIFT. (a) Robot is translated and rotated. (b) Under different lighting conditions.

We fix the threshold 𝑇𝑟𝑎𝑡𝑖𝑜 as 0.95 after making a compromise between
𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. The matching result of the pair of images in
Fig.1 by FAST+LBP with this threshold is shown in Fig.6. Then we can evaluate
how 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 changes with the different imaging conditions of omnidirec-
tional vision caused by the robot’s translation, rotation, and different lighting
conditions. Three image series are used in this evaluation. The first one includes
30 images which are acquired as the robot is only translated. The translation
increases with the image number, and the maximal translation is 1.7975 m. The
second one includes 17 images which are acquired as the robot is only rotated.
The rotation increases with the image number, and the maximal rotation is 𝜋.
The third one includes 5 images which are acquired in the same position and
under different lighting conditions. We perform the feature matching between
the first image and all the other images in each series, so how 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒
changes with different imaging conditions is acquired, as shown in Fig.7.

From the above experimental results, we clearly see that FAST+LBP pro-
vides better performance than SIFT in image matching, and it is a excellent
local visual feature for omnidirectional vision. The matching results are not bad
even when the robot is translated and rotated greatly and the lighting conditions



are very different. So FAST+LBP is robust to rotation, different lighting con-
ditions, and robot’s certain translation. The color version seems a little better
than the gray version. However, its computation cost is much higher, because
the descriptor of the color version should be computed in each of the three color
channels. Furthermore, it takes much more time to match features for the color
version because of the larger descriptor dimension. So we prefer the gray version
rather than the color version.

Fig. 6. The matching results of the pair of images in Fig.1 by FAST+LBP. The cyan
lines represent the correct matches, and the red lines represent the false matches.
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Fig. 7. The 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 with different imaging conditions by FAST+LBP, color
version of FAST+LBP, and SIFT. (left) The robot is only translated. (middle) The
robot is only rotated. (right) Under different lighting conditions.

4.4 Comparison of the needed computation time

In this experiment, we collect 125 panoramic images from the COLD database,
and then extract local visual features from these images using FAST+LBP and
SIFT respectively. Our FAST+LBP is implemented by C++, and the SIFT
we use is implemented by C++ and Matlab using C-Mex technique [19]. The



computer is equipped with 2.26GHz Duo CPU and 1.0G memory. The number of
features, the time needed to extract all the features in an image, and the average
time needed to extract one feature are demonstrated in Fig.8. The time needed in
the three steps of FAST+LBP is also shown. We see that FAST+LBP extracts
about 150∼350 features per image, less than SIFT, but it can be performed
much faster. After doing statistics on the computation time, we find that the
time needed to extract all the features by SIFT in an image is 508 times that
of FAST+LBP, and the average time needed to extract one feature by SIFT is
115 times that of FAST+LBP. The computation time needed to extract all the
features in an image by FAST+LBP is from 5ms to 20ms, so it can be performed
in real-time.

Fig. 8. The comparison of the needed computation time by FAST+LBP and SIFT.

5 Conclusions

A novel local visual feature, namely FAST+LBP, is proposed for omnidirec-
tional vision. It combines the advantages of two computationally simple oper-
ators by using FAST as the feature detector and LBP operator as the feature
descriptor. The best algorithm parameters were determined by experiments. The
comparisons between FAST+LBP, color version of FAST+LBP, and SIFT were
performed, and the experimental results show that our algorithm has better
performance than SIFT, and features can be extracted in real-time. Our local
visual feature can be applied to computer/robot vision tasks with high real-time
requirements.
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