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Two Novel Real-Time Local Visual Features for
Omnidirectional Vision

Huimin Lu∗, Zhiqiang Zheng

Department of Automatic Control, College of Mechatronics Engineering and Automation,
National University of Defense Technology, Changsha, China

Abstract

Two novel real-time local visual features, namely FAST+LBP and FAST+CSLBP,

are proposed in this paper for omnidirectional vision. They combine the advan-

tages of two computationally simple operators by using FAST as the feature

detector, and LBP and CS-LBP operators as feature descriptors. The matching

experiments of the panoramic images from the COLD database were performed

to determine their optimal parameters, and to evaluate and compare their per-

formance with SIFT. The experimental results show that our algorithms perform

better, and features can be extracted in real-time. Therefore our local visual

features can be applied to those computer/robot vision tasks with high real-time

requirements.

Keywords: Local Visual Feature, Omnidirectional vision, FAST, LBP,

CS-LBP, Feature Detector, Feature Descriptor

1. Introduction

In comparison with global visual features such as color histogram [1], PCA

features [2], Fourier signature features [3], Integral Invariants [4], etc., local vi-

sual features have better discriminative power, and are more robust with respect

to occlusion. Furthermore, good local visual features can be invariant to image
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rotation, image translation, image scale, changes of view, and even illumina-

tion changes. Thus local visual features have become increasingly popular in

recent years, and they have been applied very well in many computer/robot

vision problems, such as image retrieval [5], image stitching [6], wide baseline

matching [7], object recognition [8], place recognition [9], texture recognition

[10], robot localization [11], and robot navigation [12]. A local visual feature

algorithm consists of a feature detector and a feature descriptor. The former

answers the question “where is the feature?”, and the later the question “what is

the feature?”. Many algorithms have been proposed to solve these two problems.

With respect to feature detectors, the following have been designed: Harris [13],

Susan [14], DOG [8], MSER [15], Salient regions [16], IBR [7], EBR [7], Harris-

Laplace [17], Harris-Affine [17], Hessian-Affine [17], Features from Accelerated

Segment Test (FAST) [18][19], etc.. With respect to feature descriptors, the fol-

lowing have been used to compute the feature vectors in the feature region: SIFT

[8], PCA-SIFT [20], CSIFT [21], SURF [22], GLOH [23], Local Binary Pattern

(LBP) [24], Center-Symmetric Local Binary Pattern (CS-LBP) [24], etc.. Many

researchers have done a great deal of work on the evaluation and comparison of

these algorithms [23][25][26][27], while corresponding source codes/binaries, and

many image databases have been released on their websites for further research

and evaluation with new algorithms.

Although local visual features have so many advantages, a common defi-

ciency for most of the existing algorithms is that their computation costs are

usually high. This deficiency limits the actual application of local visual fea-

tures, especially in those situations with high real-time requirements, such as

robot navigation, self-localization, and object recognition. Therefore several

improved versions of the above algorithms have been proposed to accelerate

feature detection and/or description. Fast approximated SIFT is presented in

Ref. [28]. Compared to the standard SIFT, it uses a box filter to compute

the DoM (Difference-of-Mean) images efficiently based on integral image. The

key-points can then be detected, and the descriptor is also accelerated by using

an integral orientation histogram. The experiments show speed increases by a
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factor of eight while the performance is only slightly decreased. In the iterative

SIFT [29], the number of features can be defined in advance, so the process of

searching the key-points continues iteratively without the need for sequentially

going through the whole scale space. When it is applied in the robot local-

ization problem, the computation load of the feature extraction and matching

process can be reduced as much as possible while high localization accuracy can

be maintained. SURF [22] also takes the advantage of integral images. In fea-

ture detector, SURF approximates second order Gaussian derivatives with box

filters, and image convolutions with these box filters can be computed rapidly

by using integral images. In feature descriptor, Haar wavelet responses, which

can also be quickly computed via integral images, are used to construct the de-

scriptor vector. The experiments for camera calibration and object recognition

show that SURF outperforms its competitors.

The omnidirectional vision system can provide a 360∘ view of the robot’s

surrounding environment in a single image, and the robot can use it to realize

object recognition [30], tracking [31] and self-localization [32, 33]. It has become

more and more popular as a visual sensor for robots, providing perception in-

formation about the environment for robot control and planning. The original

algorithms of local visual features should be modified when they are applied

to omnidirectional vision because of its special imaging character, especially in

determining the feature regions. In Ref. [34], the standard SIFT is simplified,

and used for robot localization. The features are detected only in one resolution

of the panoramic images without considering scale invariance, and then each

feature region is rotated to the same global orientation to ensure rotation in-

variance. The authors found that the localization performance was improved

by omitting the normalization step in constructing the SIFT descriptor. Ref.

[35] explains why the rectangular regions are no longer appropriate for omni-

directional vision, and then proposes the active feature regions depending on

the positions of key-points. The authors assume that the displacement of the

omnidirectional vision is significantly smaller than the depth of the scene, so

the feature point’s surroundings are seen under the same spatial angle approx-
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imately. The optimal feature regions bounded by four conics can be computed

according to this character. However, the assumption may not be valid in real

application, especially for indoor environments. Ref. [36] discusses the difficulty

of matching the local visual features in panoramic images for the varying reso-

lution, and then proposes a multi-angular aperture technique which computes

multiple feature regions with different angular apertures. The matching result

is improved at the cost of increasing the feature extraction and matching time

greatly.

In this paper, we will propose two novel real-time local visual features for

omnidirectional vision, so the local visual features can be applied in actual

engineering problems with high real-time requirements without a high compu-

tation burden. Features from Accelerated Segment Test (FAST) [18][19] will

be used as the feature detector, and Local Binary Pattern (LBP) [24] and

Center-Symmetric Local Binary Pattern (CS-LBP) [24] as feature descriptors,

so two algorithms named FAST+LBP and FAST+CSLBP will be designed. The

panoramic images in the COLD database [37] will be used to test our algorithms.

The following sections are organized as follows: FAST, LBP and CS-LBP are

introduced in section 2; our FAST+LBP and FAST+CSLBP are proposed in

section 3; the best parameters of the algorithms are determined by experiments,

and the performance of FAST+LBP and FAST+CSLBP is evaluated and com-

pared with the standard SIFT in section 4; section 5 is the conclusion of this

paper.

2. FAST, LBP and CS-LBP

In this section, we give a brief introduction of FAST, LBP, and CS-LBP. All

three algorithms are computationally simple, so they can be the basis of our

real-time local visual features.

2.1. FAST

The corner feature is defined in FAST detector [18][19] by the following

Segment-Test algorithm: If more than𝑁 contiguous pixels in a Bresenham circle
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of radius 𝑟 around a center pixel 𝑝 are all brighter than 𝑝 by some threshold

or all darker than 𝑝 by some threshold, there is a corner feature at 𝑝. Then

machine learning is utilized to speed up this corner detection process. Every

pixel has 16 attributes corresponding to the 16 pixels in the Bresenham circle

(for 𝑟 = 3), and each attribute can be 0, 1 or -1. If a pixel with position 𝑥 on

the circle of 𝑝 is brighter(darker) than 𝑝, the corresponding attribute is 1(-1).

Otherwise, the attribute is 0. A decision tree can be learned by using ID3 to

select the pixels in the circle which yield the most information about whether

the center pixel is a corner. Therefore a pixel can be classified as a corner feature

or not more efficiently, which means the Segment-Test algorithm is accelerated.

This decision tree is then converted into C-code, creating a long string of nested

if-then-else statements which is compiled and used as a corner detector. Finally

non-maximal suppression is applied to remove corners which have an adjacent

corner with higher value of the sum of the absolute difference between the pixels

in the circle and the center pixel.

FAST algorithms are named according to different values of 𝑁 . Thus for 𝑁

values of 9, 10, 11, and 12, the corresponding algorithms are FAST 9, FAST 10,

FAST 11, and FAST 12. According to the experiments in [19], FAST 9 seems

to be the best FAST detector, and it is over five times faster than the quickest

non-FAST detector. The FAST algorithm also significantly outperforms Harris,

DoG, Harris-Laplace, SUSAN, etc. in repeatability, except in cases with large

amounts of added image noise.

2.2. LBP operator

The LBP is firstly proposed as a texture operator [38], and it has been highly

successful for various computer vision problems such as texture classification

[39], face recognition [40], background subtraction [41], and recognition of 3D

textured surfaces [42].

The LBP is a powerful illumination invariant texture primitive. The operator

describes each pixel by the relative gray values of its neighboring pixels. An

example with eight neighbors is shown in Fig. 1. If the gray value of the

5



Figure 1: The LBP and CS-LBP for a neighborhood of eight pixels. This figure is from Ref.
[24].

neighboring pixel is higher or equal to that of the center pixel, the binary value

is set to be one. Otherwise it is set to be zero. The LBP value of a center pixel

in (𝑥, 𝑦) position is computed over the neighborhood as follows:

𝐿𝐵𝑃𝑅,𝑁 (𝑥, 𝑦) =
𝑁−1∑
𝑖=0

𝑠(𝑛𝑖 − 𝑛𝑐)2
𝑖, 𝑠(𝑡) =

⎧⎨⎩ 1, 𝑡 ≥ 0

0, otherwise
(1)

where 𝑛𝑐 is the gray value of the center pixel, and 𝑛𝑖 the gray value of 𝑁 equally

spaced pixels on a circle of radius 𝑅. According to Eq.(1), the 𝐿𝐵𝑃𝑅,𝑁 value

may be any integer between 0 and 2𝑁 − 1. The histogram of the 𝐿𝐵𝑃𝑅,𝑁

values computed over an image region (the histogram dimension will be 2𝑁 )

can be used for texture description, and it has been proven to be robust against

illumination changes. It is also very fast to compute, and do not require many

parameters to be set [38].

Several modified versions of LBP operator have been described in Ref. [39]

for achieving rotation invariance and reducing the histogram dimension of the

LBP. When the image is rotated, the gray value 𝑛𝑖 will correspondingly move

along the perimeter of the circle, so different 𝐿𝐵𝑃𝑅,𝑁 may be computed. To

remove the effect of rotation, the first modified version with rotation invariance
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is defined as follows:

𝐿𝐵𝑃 𝑟𝑖
𝑅,𝑁 (𝑥, 𝑦) = 𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃𝑅,𝑁 , 𝑖) ∣ 𝑖 = 0, 1, ..., 𝑁 − 1} (2)

where 𝑅𝑂𝑅(𝐿𝐵𝑃𝑅,𝑁 , 𝑖) performs a circular bit-wise right shift on the 𝑁 -bit

number 𝐿𝐵𝑃𝑅,𝑁 𝑖 times. 𝐿𝐵𝑃 𝑟𝑖
𝑅,𝑁 can have 36 different values when 𝑁 = 8,

and the histogram dimension of 𝐿𝐵𝑃 𝑟𝑖
𝑅,𝑁 over an image region is 36.

In the second version named uniform LBP, at most two one-to-zero or zero-

to-one transitions in the circular binary code are allowed, so whether an LBP

is uniform can be judged by the following definition:

𝑈(𝐿𝐵𝑃𝑅,𝑁 ) = ∣𝑠(𝑛𝑁−1−𝑛𝑐)−𝑠(𝑛0−𝑛𝑐)∣+
𝑁−1∑
𝑖=1

∣𝑠(𝑛𝑖−𝑛𝑐)−𝑠(𝑛𝑖−1−𝑛𝑐)∣ (3)

If 𝑈(𝐿𝐵𝑃𝑅,𝑁 ) ≤ 2, the LBP is uniform. The uniform LBP, expressed as

𝐿𝐵𝑃𝑢2
𝑅,𝑁 , can have 𝑁(𝑁 − 1) + 2 different values, so the histogram dimension

of 𝐿𝐵𝑃𝑢2
𝑅,𝑁 over an image region is 𝑁(𝑁 − 1) + 2 + 1 (the final 1 corresponds

to those non-uniform LBP).

The third version is the uniform LBP with rotation invariance which com-

bines the above two modifications. Therefore 𝐿𝐵𝑃 𝑟𝑖𝑢2
𝑅,𝑁 value is computed as

follows:

𝐿𝐵𝑃 𝑟𝑖𝑢2
𝑅,𝑁 (𝑥, 𝑦) =

⎧⎨⎩
∑𝑁−1

𝑖=0 𝑠(𝑛𝑖 − 𝑛𝑐), 𝑈(𝐿𝐵𝑃𝑅,𝑁 ) ≤ 2

𝑁 + 1, otherwise
(4)

𝐿𝐵𝑃 𝑟𝑖𝑢2
𝑅,𝑁 value can have 𝑁 +1+ 1 different values, so the histogram dimension

of 𝐿𝐵𝑃 𝑟𝑖𝑢2
𝑅,𝑁 over an image region is 𝑁 + 1 + 1.

All three modified LBP versions can be considered to be a mapping from the

original LBP with high value range to the corresponding modified LBP with low

value range. Thus the histogram dimension can be reduced to varying extents.

In practice, the mapping process is implemented by a look-up table which can

be created in advance according to the different mapping mode: ri, u2, or riu2.

2.3. CS-LBP operator

Instead of comparing each neighboring pixel with the center pixel, the CS-

LBP [24] compares the center-symmetric pairs of pixels, as shown in Fig. 1.
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This halves the number of comparisons for the same number of neighbors - 𝑁 .

The CS-LBP value of a center pixel in (𝑥, 𝑦) position is computed as follows:

𝐶𝑆 − 𝐿𝐵𝑃𝑅,𝑁,𝑇 (𝑥, 𝑦) =

(𝑁/2)−1∑
𝑖=0

𝑠(𝑛𝑖 − 𝑛𝑖+(𝑁/2))2
𝑖, 𝑠(𝑡) =

⎧⎨⎩ 1, 𝑡 > 𝑇

0, otherwise

(5)

where 𝑛𝑖 and 𝑛𝑖+(𝑁/2) are the gray values of center-symmetric pairs of pixels

of 𝑁 equally spaced pixels on a circle with radius 𝑅, and the threshold 𝑇 is a

small value.

𝐶𝑆 − 𝐿𝐵𝑃𝑅,𝑁,𝑇 value can have 2𝑁/2 different values, so the histogram di-

mension of 𝐶𝑆 − 𝐿𝐵𝑃𝑅,𝑁,𝑇 over an image region is 2𝑁/2. Compared to the

original LBP, the histogram dimension of the CS-LBP is greatly reduced.

3. Our Novel Real-Time Local Visual Features

In this section, we present our two novel real-time local visual features,

namely FAST+LBP and FAST+CSLBP, for omnidirectional vision in detail.

The algorithms are divided into three steps: feature detector, feature region

determination, and feature descriptor. Both of the feature detectors are FAST,

and the feature region determining methods are the same for both. The LBP

and CS-LBP operator will be used as the feature descriptor in the two algorithms

respectively.

3.1. FAST feature detector

Because the FAST 9 algorithm has a low computation cost and excellent

performance in repeatability, it was chosen as the feature detector for our real-

time local visual features. The typical panoramic images and the corner features

detected by FAST 9 are demonstrated in Fig. 2 and Fig. 3 respectively. The

images in Fig. 2 are from the COLD database [37], and the database will be

used in all of the experiments described in this paper. The two images are

acquired by the robot’s omnidirectional vision in two different positions. The

robot’s translation between these two positions is 0.7561 m, and the rotation is

0.9053 rad.
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(a) (b)

Figure 2: The typical panoramic images from the COLD database. (a) and (b) are acquired
by the robot’s omnidirectional vision in two different positions. The robot’s translation is
0.7561 m, and the rotation is 0.9053 rad.

(a) (b)

Figure 3: The feature detecting results of the panoramic images in Fig. 2 by FAST 9. The
green points are the detected corner features.
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(a) (b)

Figure 4: (a) The blue rectangles are the feature regions for the panoramic image in Fig. 2(a).
(b) A feature region is rotated by angle 𝜃 to a fixed orientation. The small region on the top
left of the image is the rotated feature region.

3.2. Feature region determination

After a corner feature has been detected, a surrounding image region should

be determined, and then a descriptor can be extracted from the image region.

Some affine invariant feature detectors [17] have been proposed to adapt the

feature region to affine transformations by iterative algorithms. Although they

provide better performance, the computation complexity increases significantly

[17]. Therefore we do not consider affine invariance for our real-time local visual

feature algorithms. We adopt the feature region determining method proposed

in Ref. [34] to achieve rotation invariance. Rectangular image regions surround-

ing corner features are firstly determined in the radial direction, and then ro-

tated to a fixed orientation, as shown in Fig. 4. Fig. 4(a) shows the determined

feature regions for the panoramic image in Fig. 2(a), and Fig. 4(b) shows how

a feature region is rotated to the fixed orientation. During the rotation process,

bilinear interpolation is used.

In the next section, we will compare this feature region determining method

with the one which determines the feature regions directly in horizontal and

vertical directions through experimentation. The image size of each feature

region is also an important parameter, and the best size will be determined by
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experiments in the next section.

3.3. Feature descriptor with LBP and CS-LBP

The final step of the local visual feature algorithm is to describe the features

by computing vectors according to the information of feature regions. Recently,

the LBP and CS-LBP have been used as feature descriptors in Ref. [24], and the

strength of the SIFT descriptor is also combined. The SIFT-like grid is used,

but SIFT gradient features are replaced by LBP-based features and CS-LBP-

based features. The experimental results in Ref. [24] show that the proposed

LBP descriptor and CS-LBP descriptor outperform the SIFT descriptor. In this

paper, we use the same approach to extract descriptors for the detected features

by FAST in section 3.1 and 3.2.

3.3.1. Feature descriptor with LBP

An LBP value for each pixel of the feature region can be computed according

to the introduction in section 2.2. In order to incorporate spatial information

into the descriptor, the feature region can be divided into different grids such

as 1×1 (1 cell), 2×2 (4 cells), 3×3 (9 cells), and 4×4 (16 cells), as shown in

Fig. 5. For each cell, the histogram of LBP values is created, and then all

the histograms are concatenated into a vector as the descriptor. Finally, the

descriptor is normalized to unit length. The descriptor dimension is 𝑀×𝑀×𝑡ℎ𝑒

ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 for 𝑀×𝑀 cells. Therefore, the resulting descriptor is a

3D histogram of LBP feature locations and LBP values. In computing the

histogram, the LBP values can be weighted with a Gaussian window overlaid

over the whole feature region, or with uniform weights over the whole region.

The latter means that the feature weighting is omitted.

The performance and dimension of the LBP descriptor will be affected

greatly by different algorithm parameters such as the number of cells, differ-

ent 𝑅 and 𝑁 , Gaussian or uniform weighting, the LBP mode including the

original LBP, LBP𝑟𝑖, LBP𝑢2, and LBP𝑟𝑖𝑢2 as introduced in section 2.2. The

best parameters will be determined by experiments in the next section.
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Figure 5: The different grids that the feature region can be divided into. From left to right:
1×1 cell, 2×2 cells, 3×3 cells, 4×4 cells.

3.3.2. Feature descriptor with CS-LBP

A CS-LBP value for each pixel of the feature region can be computed ac-

cording to the introduction in section 2.3. The histogram of CS-LBP values is

created to construct the CS-LBP descriptor in the same way as that presented

in section 3.3.1. The performance and dimension of the CS-LBP descriptor will

also be greatly affected by different algorithm parameters such as the number of

cells, different 𝑅 and 𝑁 , different threshold 𝑇 , Gaussian or uniform weighting.

The best parameters will also be determined by experiments in the next section.

4. Experimental Evaluation and Discussion

In this section, a series of experiments will be done to test our two local visual

feature algorithms. Firstly, we will introduce the experimental setup such as

image database, the feature matching criterion and the criterion for performance

evaluation. Then the best parameters for FAST+LBP and FAST+CSLBP will

be determined by experiments. After the best parameters have been determined,

the performance and the needed computation time of our algorithms will be

compared with SIFT. Finally the discussions will be presented according to the

experimental results.

4.1. Experimental setup

COLD [37] is a freely available database which provides a large-scale, flexible

testing environment for vision-based topological localization. COLD contains 76

image sequences acquired in three different indoor environments across Europe.

The images are acquired by the same perspective and omnidirectional vision in
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different rooms and under various lighting conditions. We will use the typical

panoramic images and image series to perform our experiments.

When local visual features are applied in robot localization, robot SLAM,

etc., the features should be matched between the image pairs acquired in dif-

ferent imaging conditions, such as different robot positions and various lighting

conditions. Therefore we evaluate the performance of local visual features ac-

cording to the feature matching results. For each feature descriptor in an image,

we compute its Euclidean distances with all the feature descriptors in another

image needing to be matched. We consider that a match is found between the

feature pair with the closest distance if the ratio of the closest to second closest

distance is smaller than threshold 𝑇𝑟𝑎𝑡𝑖𝑜 [8] as follows:

𝑟𝑎𝑡𝑖𝑜 =
𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
≤ 𝑇𝑟𝑎𝑡𝑖𝑜 (6)

The FAST detector was compared with several well known detectors in Ref.

[19], and the LBP and CS-LBP descriptors were also compared with SIFT in Ref.

[24], so their performances have been tested independently. In this paper, we

will evaluate the overall performance of local visual features as a whole, but not

evaluate the detector and descriptor independently as in Ref. [17][19][23][24].

Therefore we use 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 as the criterion for

performance evaluation, instead of 𝑟𝑒𝑐𝑎𝑙𝑙 𝑣𝑒𝑟𝑠𝑢𝑠 1− 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 which is used to

evaluate the descriptor’s performance in Ref. [23][24]. We define𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒

in the same way as Ref. [25]:

𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
(7)

We define 1− 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 as follows in the same way as Ref. [23][24]:

1−𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠+ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
(8)

After the feature matching is finished, an 18 bin histogram is created from

△𝜃𝑖 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝜃𝑖 − 𝜃
′
𝑖) using all the matched features, where 𝜃𝑖 and 𝜃

′
𝑖 are

the rotated angles of the 𝑖th pair of matched features relative to the fixed orien-
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tation in section 3.2, and 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(.) means normalizing an angle to [0, 2𝜋).

According to the character of omnidirectional vision, when the robot is just ro-

tated or the robot’s translation is small comparing to the depth of the scene, the

relative angle of each pair of correctly matched features, namely 𝜑, should be

almost the same, so it can be estimated by computing the mean value of those

△𝜃𝑖 falling into the highest bin, and 𝜑 is approximately the rotation angle of

the robot. If ∣△𝜃𝑖 − 𝜑∣ < 𝑇𝑎𝑛𝑔𝑙𝑒, where 𝑇𝑎𝑛𝑔𝑙𝑒 is the threshold determined by

experiments, the match related to △𝜃𝑖 is a correct match. Otherwise, it is a

false match.

As we change the threshold 𝑇𝑟𝑎𝑡𝑖𝑜, the curve of 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1−
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 can be acquired to evaluate the performance of the algorithms.

4.2. Parameter evaluation for FAST+LBP

The evaluation of different parameter settings for FAST+LBP is carried out

in this experiment to determine the best parameters. As presented in section

3, six parameters will affect the performance of FAST+LBP. We will test their

different settings as follows:

The size of the feature region: 15×15, 19×19, 23×23, 27×27, 31×31, 35×35,

39×39, 43×43 pixels;

The feature region determining method: method 1–determining the fea-

ture’s rectangular region directly in horizontal and vertical directions, method

2–determining the rectangular region in the radial direction and then rotating

it to the fixed orientation as proposed in section 3.2;

The number of grids: 1×1 cell, 2×2 cells, 3×3 cells, 4×4 cells;

The 𝑁 and 𝑅: 𝑁 = 8 and 𝑅 = 1, 𝑁 = 16 and 𝑅 = 2, 𝑁 = 24 and 𝑅 = 3;

The LBP mode: the original LBP, LBP𝑟𝑖, LBP𝑢2, LBP𝑟𝑖𝑢2;

The weighting strategy: Gaussian weighting, uniform weighting.

Because of a huge amount of different combinations of the above parameters,

only one parameter is varied at a time while the others are kept fixed. The pair

of images in Fig. 2 are used to perform the feature matching, and the curves

of 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1− 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 with different parameters are shown in
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Figure 6: Parameter evaluation results for FAST+LBP. Only one parameter is varied at a
time while the others are kept fixed with the best parameters.

Fig. 6. The red curves in Fig. 6 represent the performance achieved by using

the best parameters. From the matching results, we see that 27×27 pixels for

the feature region, region determining method 2, 2×2 cells, 𝑁 = 8, 𝑅 = 1,

LBP𝑢2, and Gaussian weighting provide the best performance for FAST+LBP.

The descriptor dimension of our final FAST+LBP is 2×2×(8× 7+ 2+ 1)=236,

as shown in Fig. 7.

4.3. Parameter evaluation for FAST+CSLBP

The evaluation of different parameter settings for FAST+CSLBP is carried

out in this experiment to determine the best parameters. As presented in section

3, there are also six parameters affecting the performance of FAST+CSLBP. We

will test their different settings as follows:

The size of the feature region: 23×23, 27×27, 31×31, 35×35, 39×39, 43×43,

47×47, 51×51 pixels;

The feature region determining method: the same as those in FAST+LBP;

The number of grids: the same as those in FAST+LBP;
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(a) (b) (c)

Figure 7: Our final FAST+LBP algorithm. (a) A feature region on the panoramic image. (b)
The scale-up feature region. The region is divided into 2×2 cells. (c) The resulting feature
descriptor.

The 𝑁 and 𝑅: 𝑁 = 8 and 𝑅 = 2, 𝑁 = 6 and 𝑅 = 2;

The 𝑇 : 𝑇 = 0, 𝑇 = 5, 𝑇 = 10;

The weighting strategy: the same as those in FAST+LBP.

We perform the feature matching in the same way as FAST+LBP, and the

same pair of images are used. The curves of𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1−𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

with different parameters are shown in Fig. 8. The red curves in Fig. 8

represent the performance achieved by using the best parameters. From the

matching results, we see that 43×43 pixels for the feature region, region deter-

mining method 2, 3×3 cells, 𝑁 = 6, 𝑅 = 2, 𝑇 = 5, and Gaussian weighting

provide the best performance for FAST+CSLBP. The descriptor dimension of

our final FAST+CSLBP is 3×3×26/2=72, much smaller than that of our final

FAST+LBP, as shown in Fig. 9.

4.4. Performance comparison of FAST+LBP, FAST+CSLBP, and SIFT

The performance comparison of FAST+LBP, FAST+CSLBP and SIFT is

carried out in this experiment. The SIFT we adopt is implemented by Andrea

Vedaldi [43]. The criterion of 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 𝑣𝑒𝑟𝑠𝑢𝑠 1− 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is still used.

Because most of the current robot’s cameras are color ones, and the images

in the COLD database are color images, we also compare the color version of
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Figure 8: Parameter evaluation results for FAST+CSLBP. Only one parameter is varied at a
time while the others are kept fixed with the best parameters.

(a) (b) (c)

Figure 9: Our final FAST+CSLBP algorithm. (a) A feature region on the panoramic image.
(b) The scale-up feature region. The region is divided into 3×3 cells. (c) The resulting feature
descriptor.
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(a) (b)

Figure 10: The typical panoramic images from the COLD database acquired by the robot’s
omnidirectional vision in the same position but under different lighting conditions. (a) At
night. (b) In daytime and cloudy weather.

FAST+LBP and FAST+CSLBP together. In our color version of FAST+LBP

and FAST+CSLBP, the feature detector still uses the gray values of images, but

the descriptor is computed in all of the R, G, B color channels, so its dimension

is three times of that of the gray version. Two pairs of images are used. The

first one is that in Fig. 2, and they are acquired when the robot is translated

and rotated. The second pair of images are acquired when the robot is in the

same position but under different lighting conditions, as shown in Fig. 10. The

matching results of these two pairs of images are depicted in Fig. 11(a) and (b)

respectively.

We fix the threshold 𝑇𝑟𝑎𝑡𝑖𝑜 as 0.95 after making a compromise between

𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. The matching results of the pair of images

in Fig. 2 by FAST+LBP and FAST+CSLBP with this threshold are shown in

Fig. 12. Then we can evaluate how 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 changes with the different

imaging conditions of omnidirectional vision caused by the robot’s translation,

rotation, and different lighting conditions. Three image series are used in this

evaluation. The first one includes 30 images, and they are acquired as the robot

is only translated. The translation increases with the image number, and the

maximal translation is 1.7975 m. The second one includes 17 images, and they
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Figure 11: The performance comparison of FAST+LBP, FAST+CSLBP, the color version of
FAST+LBP, the color version of FAST+CSLBP, and SIFT. (a) The robot is translated and
rotated. (b) Under different lighting conditions.

Figure 12: The matching results of the pair of images in Fig. 2 by FAST+LBP (top) and
FAST+CSLBP (bottom). The green points are the detected corner features. The cyan lines
represent the correct matches, and the red lines represent the false matches.
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Figure 13: The typical images belonging to different series. (top) The first series. (middle)
The second series. (bottom) The third series.

are acquired as the robot is only rotated. The rotation increases with the image

number, and the maximal rotation is 𝜋. The third one includes 5 images, and

they are acquired in the same position and under different lighting conditions.

Some typical images belonging to each series are shown in Fig. 13. We per-

form the feature matching between the first image and all the other images in

each series, so how 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 changes with different imaging conditions is

acquired, as shown in Fig. 14.

From the above experimental results, we clearly see that FAST+LBP and

FAST+CSLBP provide better performance than SIFT in image matching, and

they are excellent local visual features for omnidirectional vision. The match-

ing results are not bad even when the robot is translated and rotated greatly

and the lighting conditions are very different. The color version seems a little
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Figure 14: The 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 with different imaging conditions by FAST+LBP,
FAST+CSLBP, the color version of FAST+LBP, the color version of FAST+CSLBP, and
SIFT. (a) The robot is only translated. (b) The robot is only rotated. (c) Under different
lighting conditions.
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better than the gray version. However, its computation cost is much higher,

because the descriptor of the color version is computed in each of the three

color channels. Furthermore, it takes much more time to match features for

the color version because of the larger descriptor dimension. So we prefer

the gray version rather than the color version. Regarding the comparison of

FAST+LBP and FAST+CSLBP, several conclusions can be summarized as fol-

lows: FAST+LBP seems better than FAST+CSLBP when the robot is trans-

lated and rotated, as shown in Fig. 11(a) and Fig. 14(a); FAST+CSLBP seems

better than FAST+LBP when the robot is only rotated, as shown in Fig. 14(b);

FAST+CSLBP seems better than FAST+LBP when the illumination changes,

as shown in Fig. 11(b) and Fig. 14(c); the descriptor dimension of our final

FAST+CSLBP is much smaller than that of our final FAST+LBP, which is

also an important factor that should be considered when choosing local visual

feature in actual applications.

4.5. Comparison of the needed computation time

In this experiment, we collect 125 panoramic images from the COLD database,

and then extract local visual features from these images using FAST+LBP,

FAST+CSLBP, and SIFT respectively. Our FAST+LBP and FAST+CSLBP

are implemented by C++, and the SIFT we use is implemented by C++ and

Matlab using C-Mex technique [43]. The computer is equipped with 2.26GHz

Duo CPU and 1.0G memory. The number of features, the time needed to extract

all the features in an image, and the average time needed to extract one feature

are demonstrated in Fig. 15. The time needed in the three steps of FAST+LBP

is also shown (the result of FAST+CSLBP is almost the same, so we do not

demonstrate it in this figure). We see that our FAST+LBP and FAST+CSLBP

extract about 150∼350 features on an image, less than SIFT. Actually, accord-

ing to the researches in Ref. [29][44], the large number of local visual features is

beyond what robot localization or image retrieval really needs, and the number

can be reduced greatly. So the number of the FAST+LBP and FAST+CSLBP

features is enough for the applications, which has also been verified by the above
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Figure 15: The comparison of the needed computation time by FAST+LBP, FAST+CSLBP
and SIFT.

image matching experiments. Our FAST+LBP and FAST+CSLBP can be per-

formed much faster, and the computation times needed in FAST+LBP and

FAST+CSLBP are almost the same. After doing statistics on the computation

time, we find that the time needed to extract all the features by SIFT in an im-

age is about 508 times that of FAST+LBP or FAST+CSLBP; the average time

needed to extract one feature by SIFT is about 115 times that of FAST+LBP

or FAST+CSLBP. The computation time needed to extract all the features in

an image by FAST+LBP or FAST+CSLBP is from 5ms to 20ms, so they can

be performed in real-time.

4.6. Discussions

Our FAST+LBP and FAST+CSLBP have the following good features:

- They are computationally simple, and can be used in the actual robot

localization, visual SLAM, etc. with real-time requirement;

- Better matching results can be achieved compared to SIFT, which means

that they have better discriminative power;
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Figure 16: The typical images when multiplicative noise with different variances is added.
The variances are 0.01 (left), 0.03 (middle), and 0.05 (right) respectively.

- They are robust with respect to rotation, different lighting conditions, and

the robot’s certain translation;

- They can also be used in perspective cameras, besides omnidirectional

vision.

Because the FAST detector is sensitive to image noise [19], we also com-

pare the performances of FAST+LBP, FAST+CSLBP, the color version of

FAST+LBP, the color version of FAST+CSLBP, and SIFT when different im-

age noise is added. We add uniformly distributed random noise with mean 0

and different variances to the panoramic image in Fig. 2(a). The noise is multi-

plicative, and the range of the variance is from 0 to 0.05. Several noisy images

are shown in Fig. 16. We perform the feature matching between the original

image and the noisy images to see how the noise affects the performance of

different local visual features. The experimental results are shown in Fig. 17.

We see that although large amounts of image noise have been added to the

image and the FAST detector is sensitive to the image noise, good performance

of FAST+CSLBP, comparable with SIFT, can be achieved. The performance

of FAST+CSLBP is much better than that of FAST+LBP in this experiment,

which also means that the CS-LBP descriptor is much more robust to image

noise than the LBP descriptor. There is not much difference in the robustness

to image noise between the color versions and the gray versions of our local

visual features.

In the next work, we will try to improve the robustness of the FAST detector
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Figure 17: The performance comparison of the local visual features when different image noise
is added.

to image noise. We will perform more experiments to evaluate the performance

of our FAST+LBP and FAST+CSLBP, and compare them with more local

visual features, besides SIFT. We will also try to apply our real-time local

visual features to the actual robot topological localization, visual SLAM, and

scene/place classification or recognition.

5. Conclusions

Two novel local visual features, namely FAST+LBP and FAST+CSLBP, are

proposed for omnidirectional vision in this paper. They combine the advantages

of two computationally simple operators by using FAST as the feature detector,

and LBP and CS-LBP operators as feature descriptors. The best parameters

of the algorithms were determined by experiments. The comparisons between

FAST+LBP, FAST+CSLBP, the color version of FAST+LBP, the color version

of FAST+CSLBP, and SIFT were performed, and the experimental results show

that our algorithms have better performance than SIFT, and features can be

extracted in real-time. Furthermore, several conclusions on the comparison of

FAST+LBP and FAST+CSLBP are also summarized from the experimental

results.
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